pmdd function

Partial Martingale Difference Divergence

Partial Martingale Difference Divergence

pmdd measures conditional mean dependence of Y given X adjusting for the dependence on Z, where each contains one variable (univariate) or more variables (multivariate). Only the U-centering approach is applied.

pmdd(X, Y, Z)

Arguments

  • X: A vector, matrix or data frame, where rows represent samples, and columns represent variables.
  • Y: A vector, matrix or data frame, where rows represent samples, and columns represent variables.
  • Z: A vector, matrix or data frame, where rows represent samples, and columns represent variables.

Returns

pmdd returns the squared partial martingale difference divergence of Y given X adjusting for the dependence on Z.

Examples

# X, Y, Z are vectors with 10 samples and 1 variable X <- rnorm(10) Y <- rnorm(10) Z <- rnorm(10) pmdd(X, Y, Z) # X, Y, Z are 10 x 2 matrices with 10 samples and 2 variables X <- matrix(rnorm(10 * 2), 10, 2) Y <- matrix(rnorm(10 * 2), 10, 2) Z <- matrix(rnorm(10 * 2), 10, 2) pmdd(X, Y, Z)

References

Park, T., Shao, X., and Yao, S. (2015). Partial martingale difference correlation. Electronic Journal of Statistics, 9(1), 1492-1517. http://dx.doi.org/10.1214/15-EJS1047.

  • Maintainer: Ze Jin
  • License: GPL (>= 2)
  • Last published: 2018-02-25

Useful links