EMC23.3.0 package

Bayesian Hierarchical Analysis of Cognitive Models of Choice

align_loadings

Reorder MCMC Samples of Factor Loadings

auto_thin

Automatically Thin an emc Object

chain_n

MCMC Chain Iterations

check

Convergence Checks for an emc Object

compare_subject

Information Criteria For Each Participant

compare

Information Criteria and Marginal Likelihoods

contr.anova

Anova Style Contrast Matrix

contr.bayes

Contrast Enforcing Equal Prior Variance on each Level

contr.decreasing

Contrast Enforcing Decreasing Estimates

contr.increasing

Contrast Enforcing Increasing Estimates

convolve_design_matrix

Convolve Events with HRF to Construct Design Matrices

credible

Posterior Credible Interval Tests

credint

Posterior Quantiles

cut_factors

Cut Factors Based on Credible Loadings

DDM

The Diffusion Decision Model

DDMGNG

The GNG (go/nogo) Diffusion Decision Model

design_fmri

Create fMRI Design for EMC2 Sampling

design

Specify a Design and Model

EMC2-package

EMC2: Bayesian Hierarchical Analysis of Cognitive Models of Choice

ess_summary

Effective Sample Size

factor_diagram

Factor diagram plot #Makes a factor diagram plot. Heavily based on the...

fit

Model Estimation in EMC2

gd_summary

Gelman-Rubin Statistic

get_BayesFactor

Bayes Factors

get_data

Get Data

get_design

Get Design

get_group_design

Get Group Design

get_pars

Filter/Manipulate Parameters from emc Object

get_prior

Get Prior

get_trend_pnames

Get parameter types from trend object

group_design

Create Group-Level Design Matrices

high_pass_filter

Apply High-Pass Filtering to fMRI Data

hypothesis

Within-Model Hypothesis Testing

init_chains

Initialize Chains

LBA

The Linear Ballistic Accumulator model

LNR

The Log-Normal Race Model

make_data

Simulate Data

make_emc

Make an emc Object

make_random_effects

Generate Subject-Level Parameters

make_SEM_diagram

Make SEM Diagram

make_sem_structure

Define Structural Equation Model (SEM) Matrices

make_trend

Create a trend specification for model parameters

mapped_pars

Parameter Mapping Back to the Design Factors

merge_chains

Merge Samples

model_averaging

Model Averaging

MRI_AR1

Create an AR(1) GLM model for fMRI data

MRI

GLM model for fMRI data

pairs_posterior

Plot Within-Chain Correlations

parameters

Return Data Frame of Parameters

plot_caf

Plot conditional accuracy functions

plot_cdf

Plot Defective Cumulative Distribution Functions

plot_delta

Plot Difference of Cumulative Distribution Functions

plot_density

Plot Defective Densities

plot_design_fmri

Plot fMRI Design Matrix

plot_design

Plot Design

plot_fmri

Plot fMRI peri-stimulus time courses

plot_pars

Plots Density for Parameters

plot_relations

Plot Group-Level Relations

plot_sbc_ecdf

Plot the ECDF Difference in SBC Ranks

plot_sbc_hist

Plot the Histogram of the Observed Rank Statistics of SBC

plot_ss_if

Plot Inhibition Functions

plot_ss_srrt

Plot Mean SRRT

plot_stat

Plot Statistics on Data

plot_trend

Plots trends over time

plot.emc.design

Plot method for emc.design objects

plot.emc.prior

Plot a prior

plot.emc

Plot Function for emc Objects

predict.emc

Generate Posterior/Prior Predictives

prior_help

Prior Specification Information

prior

Specify Priors for the Chosen Model

profile_plot

Likelihood Profile Plots

RDM

The Racing Diffusion Model

recovery

Recovery Plots

register_trend

Register a custom C++ trend kernel

reshape_events

Reshape events data for fMRI analysis

rotate_loadings

Rotate loadings based on posterior median

run_bridge_sampling

Estimating Marginal Likelihoods Using WARP-III Bridge Sampling

run_emc

Fine-Tuned Model Estimation

run_hyper

Run a Group-level Model.

run_sbc

Simulation-Based Calibration

sampled_pars

Get Model Parameters from a Design

SDT

Gaussian Signal Detection Theory Model for Binary Responses

split_timeseries

Split fMRI Timeseries Data by ROI Columns

subset.emc

Shorten an emc Object

summary.emc.design

Summary method for emc.design objects

summary.emc.group_design

Summary method for emc.group_design objects

summary.emc.prior

Summary method for emc.prior objects

summary.emc

Summary Statistics for emc Objects

trend_help

Get help information for trend kernels and bases

update2version

Update EMC Objects to the Current Version

Fit Bayesian (hierarchical) cognitive models using a linear modeling language interface using particle Metropolis Markov chain Monte Carlo sampling with Gibbs steps. The diffusion decision model (DDM), linear ballistic accumulator model (LBA), racing diffusion model (RDM), and the lognormal race model (LNR) are supported. Additionally, users can specify their own likelihood function and/or choose for non-hierarchical estimation, as well as for a diagonal, blocked or full multivariate normal group-level distribution to test individual differences. Prior specification is facilitated through methods that visualize the (implied) prior. A wide range of plotting functions assist in assessing model convergence and posterior inference. Models can be easily evaluated using functions that plot posterior predictions or using relative model comparison metrics such as information criteria or Bayes factors. References: Stevenson et al. (2024) <doi:10.31234/osf.io/2e4dq>.

  • Maintainer: Niek Stevenson
  • License: GPL (>= 3)
  • Last published: 2025-12-02