loglk_full function

Full log-likelihood function

Full log-likelihood function

Full log-likelihood function with both terms of ignoring and missing

loglk_full(dat, zm, pi, mu, sigma, ncov = 2, xi)

Arguments

  • dat: An n×pn\times p matrix where each row represents an individual observation
  • zm: An n-dimensional vector containing the class labels including the missing-label denoted as NA.
  • pi: A g-dimensional vector for the initial values of the mixing proportions.
  • mu: A p×gp \times g matrix for the initial values of the location parameters.
  • sigma: A p×pp\times p covariance matrix if ncov=1, or a list of g covariance matrices with dimension p×p×gp\times p \times g if ncov=2.
  • ncov: Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.
  • xi: A 2-dimensional vector containing the initial values of the coefficients in the logistic function of the Shannon entropy.

Returns

  • lk: Log-likelihood value

Details

The full log-likelihood function can be expressed as

logLPC(full)(Ψ)=logLPC(ig)(θ)+logLPC(miss)(θ,ξ), \log L_{PC}^{({full})}(\boldsymbol{\Psi})=\log L_{PC}^{({ig})}(\theta)+\log L_{PC}^{({miss})}(\theta,\boldsymbol{\xi}),

wherelogLPC(ig)(θ)\log L_{PC}^{({ig})}(\theta)is the log likelihood function formed ignoring the missing in the label of the unclassified features, and logLPC(miss)(θ,ξ)\log L_{PC}^{({miss})}(\theta,\boldsymbol{\xi}) is the log likelihood function formed on the basis of the missing-label indicator.

  • Maintainer: Ziyang Lyu
  • License: GPL-3
  • Last published: 2022-10-18

Useful links