loglk_ig function

Log likelihood for partially classified data with ingoring the missing mechanism

Log likelihood for partially classified data with ingoring the missing mechanism

loglk_ig(dat, zm, pi, mu, sigma, ncov = 2)

Arguments

  • dat: An n×pn\times p matrix where each row represents an individual observation
  • zm: An n-dimensional vector containing the class labels including the missing-label denoted as NA.
  • pi: A g-dimensional vector for the initial values of the mixing proportions.
  • mu: A p×gp \times g matrix for the initial values of the location parameters.
  • sigma: A p×pp\times p covariance matrix if ncov=1, or a list of g covariance matrices with dimension p×p×gp\times p \times g if ncov=2.
  • ncov: Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.

Returns

  • lk: Log-likelihood value.

Details

The log-likelihood function for partially classified data with ingoring the missing mechanism can be expressed as

logLPC(ig)(θ)=j=1n[(1mj)i=1gzij{logπi+logfi(yj;ωi)}+mjlog{i=1gπifi(yj;ωi)}], \log L_{PC}^{({ig})}(\theta)=\sum_{j=1}^n \left[(1-m_j)\sum_{i=1}^g z_{ij}\left\lbrace \log\pi_i+\log f_i(y_j;\omega_i)\right\rbrace +m_j\log \left\lbrace \sum_{i=1}^g\pi_i f_i(y_j;\omega_i)\right\rbrace \right],

where mjm_j is a missing label indicator, zijz_{ij} is a zero-one indicator variable defining the known group of origin of each, and fi(yj;ωi)f_i(y_j;\omega_i) is a probability density function with parameters ωi\omega_i.

  • Maintainer: Ziyang Lyu
  • License: GPL-3
  • Last published: 2022-10-18

Useful links