loglk_miss function

Log likelihood function formed on the basis of the missing-label indicator

Log likelihood function formed on the basis of the missing-label indicator

Log likelihood for partially classified data based on the missing mechanism with the Shanon entropy

loglk_miss(dat, zm, pi, mu, sigma, ncov = 2, xi)

Arguments

  • dat: An n×pn\times p matrix where each row represents an individual observation
  • zm: An n-dimensional vector containing the class labels including the missing-label denoted as NA.
  • pi: A g-dimensional vector for the initial values of the mixing proportions.
  • mu: A p×gp \times g matrix for the initial values of the location parameters.
  • sigma: A p×pp\times p covariance matrix if ncov=1, or a list of g covariance matrices with dimension p×p×gp\times p \times g if ncov=2.
  • ncov: Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.
  • xi: A 2-dimensional vector containing the initial values of the coefficients in the logistic function of the Shannon entropy.

Returns

  • lk: loglikelihood value

Details

The log-likelihood function formed on the basis of the missing-label indicator can be expressed by

logLPC(miss)(θ,ξ)=j=1n[(1mj)log{1q(yj;θ,ξ)}+mjlogq(yj;θ,ξ)], \log L_{PC}^{({miss})}(\theta,\boldsymbol{\xi})=\sum_{j=1}^n\big[ (1-m_j)\log\left\lbrace 1-q(y_j;\theta,\boldsymbol{\xi})\right\rbrace +m_j\log q(y_j;\theta,\boldsymbol{\xi})\big],

where q(yj;θ,ξ)q(y_j;\theta,\boldsymbol{\xi}) is a logistic function of the Shannon entropy ej(yj;θ)e_j(y_j;\theta), and mjm_j is a missing label indicator.

  • Maintainer: Ziyang Lyu
  • License: GPL-3
  • Last published: 2022-10-18

Useful links