rlabel function

Generation of a missing-data indicator

Generation of a missing-data indicator

Generate the missing label indicator

rlabel(dat, pi, mu, sigma, ncov = 2, xi)

Arguments

  • dat: An n×pn\times p matrix where each row represents an individual observation.
  • pi: A g-dimensional vector for the initial values of the mixing proportions.
  • mu: A p×gp \times g matrix for the initial values of the location parameters.
  • sigma: A p×pp\times p covariance matrix if ncov=1, or a list of g covariance matrices with dimension p×p×gp\times p \times g if ncov=2.
  • ncov: Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.
  • xi: A 2-dimensional coefficient vector for a logistic function of the Shannon entropy.

Returns

  • m: A n-dimensional vector of missing label indicator. The element of outputs m represents its label indicator is missing if m equals 1, otherwise its label indicator is available if m equals to 0.

Examples

n<-150 pi<-c(0.25,0.25,0.25,0.25) sigma<-array(0,dim=c(3,3,4)) sigma[,,1]<-diag(1,3) sigma[,,2]<-diag(2,3) sigma[,,3]<-diag(3,3) sigma[,,4]<-diag(4,3) mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4) dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma,ncov=2) xi<-c(-0.5,1) m<-rlabel(dat=dat$Y,pi=pi,mu=mu,sigma=sigma,xi=xi,ncov=2)
  • Maintainer: Ziyang Lyu
  • License: GPL-3
  • Last published: 2022-10-18

Useful links