rmix function

Normal mixture model generator.

Normal mixture model generator.

Generate random observations from the normal mixture distributions.

rmix(n, pi, mu, sigma, ncov = 2)

Arguments

  • n: Number of observations.
  • pi: A g-dimensional vector for the initial values of the mixing proportions.
  • mu: A p×gp \times g matrix for the initial values of the location parameters.
  • sigma: A p×pp\times p covariance matrix if ncov=1, or a list of g covariance matrices with dimension p×p×gp\times p \times g if ncov=2.
  • ncov: Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.

Returns

  • Y: An n×pn\times p numeric matrix with samples drawn in rows.

  • Z: An n×gn\times g numeric matrix; each row represents zero-one indicator variables defining the known class of origin of each.

  • clust: An n-dimensional vector of class partition.

Examples

n<-150 pi<-c(0.25,0.25,0.25,0.25) sigma<-array(0,dim=c(3,3,4)) sigma[,,1]<-diag(1,3) sigma[,,2]<-diag(2,3) sigma[,,3]<-diag(3,3) sigma[,,4]<-diag(4,3) mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4) dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma,ncov=2)
  • Maintainer: Ziyang Lyu
  • License: GPL-3
  • Last published: 2022-10-18

Useful links