EQRN0.1.2 package

Extreme Quantile Regression Neural Networks for Risk Forecasting

backend_is_installed

Check if Torch Backend Libraries are Installed

batch_size_default

Default batch size (internal)

check_directory

Check directory existence

compute_EQRN_GPDLoss

Generalized Pareto likelihood loss of a EQRN_iid predictor

compute_EQRN_seq_GPDLoss

Generalized Pareto likelihood loss of a EQRN_seq predictor

decay_learning_rate

Performs a learning rate decay step on an optimizer

default_device

Default torch device

end_doFuture_strategy

End the currently set doFuture strategy

ensure_backend_installed

Ensure Torch Backend Libraries are Installed

EQRN_excess_probability_seq

Tail excess probability prediction using an EQRN_seq object

EQRN_excess_probability

Tail excess probability prediction using an EQRN_iid object

EQRN_fit_restart

Wrapper for fitting EQRN with restart for stability

EQRN_fit_seq

EQRN fit function for sequential and time series data

EQRN_fit

EQRN fit function for independent data

EQRN_load

Load an EQRN object from disc

EQRN_predict_internal_seq

Internal predict function for an EQRN_seq fitted object

EQRN_predict_internal

Internal predict function for an EQRN_iid

EQRN_predict_params_seq

GPD parameters prediction function for an EQRN_seq fitted object

EQRN_predict_params

GPD parameters prediction function for an EQRN_iid fitted object

EQRN_predict_seq

Predict function for an EQRN_seq fitted object

EQRN_predict

Predict function for an EQRN_iid fitted object

EQRN_save

Save an EQRN object on disc

EQRN-package

EQRN: Extreme Quantile Regression Neural Networks for Risk Forecasting

excess_probability.EQRN_iid

Tail excess probability prediction method using an EQRN_iid object

excess_probability.EQRN_seq

Tail excess probability prediction method using an EQRN_iid object

excess_probability

Excess Probability Predictions

FC_GPD_net

MLP module for GPD parameter prediction

FC_GPD_SNN

Self-normalized fully-connected network module for GPD parameter predi...

fit_GPD_unconditional

Maximum likelihood estimates for the GPD distribution using peaks over...

fix_dimsimplif

(INTERNAL) Corrects a dimension simplification bug from the torch pack...

get_doFuture_operator

Get doFuture operator

get_excesses

Computes rescaled excesses over the conditional quantiles

GPD_excess_probability

Tail excess probability prediction based on conditional GPD parameters

GPD_quantiles

Compute extreme quantile from GPD parameters

install_backend

Install Torch Backend Libraries

instantiate_EQRN_network

Instantiates the default networks for training a EQRN_iid model

lagged_features

Covariate lagged replication for temporal dependence

last_elem

Last element of a vector

legacy_names

Internal renaming function for back-compatibility

list2matrix

Convert a list to a matrix

loss_GPD_tensor

GPD tensor loss function for training a EQRN network

loss_GPD

Generalized Pareto likelihood loss

make_folds

Create cross-validation folds

mean_absolute_error

Mean absolute error

mean_squared_error

Mean squared error

mts_dataset

Dataset creator for sequential data

multilevel_exceedance_proba_error

Multilevel 'quantile_exceedance_proba_error'

multilevel_MAE

Multilevel quantile MAEs

multilevel_MSE

Multilevel quantile MSEs

multilevel_pred_bias

Multilevel prediction bias

multilevel_prop_below

Multilevel 'proportion_below'

multilevel_q_loss

Multilevel quantile losses

multilevel_q_pred_error

Multilevel 'quantile_prediction_error'

multilevel_R_squared

Multilevel R squared

multilevel_resid_var

Multilevel residual variance

nn_alpha_dropout

Alpha-dropout module

nn_dropout_nd

Dropout module

onload_backend_installer

(DEPRECATED) On-Load Torch Backend Internal Install helper

perform_scaling

Performs feature scaling without overfitting

predict_GPD_semiconditional

Predict semi-conditional extreme quantiles using peaks over threshold

predict_unconditional_quantiles

Predict unconditional extreme quantiles using peaks over threshold

predict.EQRN_iid

Predict method for an EQRN_iid fitted object

predict.EQRN_seq

Predict method for an EQRN_seq fitted object

predict.QRN_seq

Predict method for a QRN_seq fitted object

prediction_bias

Prediction bias

prediction_residual_variance

Prediction residual variance

process_features

Feature processor for EQRN

proportion_below

Proportion of observations below conditional quantile vector

QRN_fit_multiple

Wrapper for fitting a recurrent QRN with restart for stability

QRN_seq_fit

Recurrent QRN fitting function

QRN_seq_predict_foldwise_sep

Sigle-fold foldwise fit-predict function using a recurrent QRN

QRN_seq_predict_foldwise

Foldwise fit-predict function using a recurrent QRN

QRN_seq_predict

Predict function for a QRN_seq fitted object

QRNN_RNN_net

Recurrent quantile regression neural network module

quantile_exceedance_proba_error

Quantile exceedance probability prediction calibration error

quantile_loss_tensor

Tensor quantile loss function for training a QRN network

quantile_loss

Quantile loss

quantile_prediction_error

Quantile prediction calibration error

R_squared

R squared

Recurrent_GPD_net

Recurrent network module for GPD parameter prediction

roundm

Mathematical number rounding

safe_save_rds

Safe RDS save

semiconditional_train_valid_GPD_loss

Semi-conditional GPD MLEs and their train-validation likelihoods

Separated_GPD_SNN

Self-normalized separated network module for GPD parameter prediction

set_doFuture_strategy

Set a doFuture execution strategy

setup_optimizer_seq

Instantiate an optimizer for training an EQRN_seq network

setup_optimizer

Instantiate an optimizer for training an EQRN_iid network

square_loss

Square loss

unconditional_train_valid_GPD_loss

Unconditional GPD MLEs and their train-validation likelihoods

vec2mat

Convert a vector to a matrix

vector_insert

Insert value in vector

This framework enables forecasting and extrapolating measures of conditional risk (e.g. of extreme or unprecedented events), including quantiles and exceedance probabilities, using extreme value statistics and flexible neural network architectures. It allows for capturing complex multivariate dependencies, including dependencies between observations, such as sequential dependence (time-series). The methodology was introduced in Pasche and Engelke (2024) <doi:10.1214/24-AOAS1907> (also available in preprint: Pasche and Engelke (2022) <doi:10.48550/arXiv.2208.07590>).

  • Maintainer: Olivier C. Pasche
  • License: GPL (>= 3)
  • Last published: 2025-11-21