Multivar.PCAContCont function

Compute the multivariate predictive causal association (PCA) in the Continuous-continuous case

Compute the multivariate predictive causal association (PCA) in the Continuous-continuous case

The function Multivar.PCA.ContCont computes the predictive causal association (PCA) when SS = the vector of pretreatment predictors and TT = the True endpoint. All SS and TT should be continuous normally distributed endpoints. See Details below.

Multivar.PCA.ContCont(Sigma_TT, Sigma_TS, Sigma_SS, T0T1=seq(-1, 1, by=.01), M=NA)

Arguments

  • Sigma_TT: The variance-covariance matrix ΣTT=(σT0T0σT0T1σT0T1σT1T1)\bold{\Sigma}_{TT}=\left(\begin{array}{cc}\sigma_{T0T0} & \sigma_{T0T1} \\ \sigma_{T0T1} & \sigma_{T1T1}\end{array}\right).
  • Sigma_TS: The matrix that contains the covariances σT0Sr\sigma_{T0Sr}, σT1Sr\sigma_{T1Sr}. For example, when there are 22 pretreatment predictors ΣTS=(σT0S1σT0S2σT1S1σT1S2)\bold{\Sigma}_{TS}=\left(\begin{array}{cc}\sigma_{T0S1} & \sigma_{T0S2} \\ \sigma_{T1S1} & \sigma_{T1S2}\end{array}\right).
  • Sigma_SS: The variance-covariance matrix of the pretreatment predictors. For example, when there are 22 pretreatment predictors ΣSS=(σS1S1σS1S2σS1S2σS2S2)\bold{\Sigma}_{SS}=\left(\begin{array}{cc}\sigma_{S1S1} & \sigma_{S1S2} \\ \sigma_{S1S2} & \sigma_{S2S2}\end{array}\right).
  • T0T1: A scalar or vector that contains the correlation(s) between the counterfactuals T0T_0 and T1T_1 that should be considered in the computation of Rψ2R^2_{\psi}. Default seq(-1, 1, by=.01), i.e., the values 1-1, 0.99-0.99, 0.98-0.98, ..., 11.
  • M: If M=NA, all correlation(s) between the counterfactuals T0T_0 and T1T_1 specified in the argument T0T1 are used to compute Rψ2R^2_{\psi}. If M=m, random draws are taken from T0T1 until m Rψ2R^2_{\psi} are found. Default M=NA.

Returns

An object of class Multivar.PCA.ContCont with components, - Total.Num.Matrices: An object of class numeric that contains the total number of matrices that can be formed as based on the user-specified correlations in the function call.

  • Pos.Def: A data.frame that contains the positive definite matrices that can be formed based on the user-specified correlations. These matrices are used to compute the vector of the Rψ2R^2_{\psi} values.

  • PCA: A scalar or vector that contains the PCA (Rψ2R^2_{\psi}) value(s).

  • R2_psi_g: A Data.frame that contains Rψg2R^2_{\psi g}.

References

Alonso, A., & Van der Elst, W. (submitted). Evaluating multivariate predictors of therapeutic success: a causal inference approach.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

Examples

# First specify the covariance matrices to be used Sigma_TT = matrix(c(177.870, NA, NA, 162.374), byrow=TRUE, nrow=2) Sigma_TS = matrix(data = c(-45.140, -109.599, 11.290, -56.542, -106.897, 20.490), byrow = TRUE, nrow = 2) Sigma_SS = matrix(data=c(840.564, 73.936, -3.333, 73.936, 357.719, -30.564, -3.333, -30.564, 95.063), byrow = TRUE, nrow = 3) # Compute PCA Results <- Multivar.PCA.ContCont(Sigma_TT = Sigma_TT, Sigma_TS = Sigma_TS, Sigma_SS = Sigma_SS) # Evaluate results summary(Results) plot(Results)
  • Maintainer: Wim Van der Elst
  • License: GPL (>= 2)
  • Last published: 2020-07-04

Useful links