Graphically illustrates the theoretical plausibility of finding a good pretreatment predictor in the continuous-continuous case
Graphically illustrates the theoretical plausibility of finding a good pretreatment predictor in the continuous-continuous case
This function provides a plot that displays the frequencies, percentages, or cumulative percentages of ρmin2 for a fixed value of δ (given the observed variances of the true endpoint in the control and experimental treatment conditions and a specified grid of values for the unidentified parameter ρ(T0,T1); see GoodPretreatContCont). For details, see the online appendix of Alonso et al., submitted.
## S3 method for class 'GoodPretreatContCont'plot(x, main, col, Type="Percent", Labels=FALSE,Par=par(oma=c(0,0,0,0), mar=c(5.1,4.1,4.1,2.1)),...)
Arguments
x: An object of class GoodPretreatContCont. See GoodPretreatContCont.
main: The title of the plot.
col: The color of the bins.
Type: The type of plot that is produced. When Type=Freq or Type=Percent, the Y-axis shows frequencies or percentages of ρmin2. When Type=CumPerc, the Y-axis shows cumulative percentages of ρmin2. Default "Percent".
Labels: Logical. When Labels=TRUE, the percentage of ρmin2 values that are equal to or larger than the midpoint value of each of the bins are displayed (on top of each bin). Only applies when Type=Freq or Type=Percent. Default FALSE.
Par: Graphical parameters for the plot. Default par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)).
...: Extra graphical parameters to be passed to hist().
References
Alonso, A., Van der Elst, W., & Molenberghs, G. (submitted). Validating predictors of therapeutic success: a causal inference approach.
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
See Also
GoodPretreatContCont
Examples
# compute rho^2_min in the setting where the variances of T in the control# and experimental treatments equal 100 and 120, delta is fixed at 50,# and the grid G={0, .01, ..., 1} is considered for the counterfactual # correlation rho_T0T1:MinPred <- GoodPretreatContCont(T0T0 =100, T1T1 =120, Delta =50,T0T1 = seq(0,1, by =0.01))# Plot the results (use percentages on Y-axis)plot(MinPred, Type="Percent")# Same plot, but add the percentages of ICA values that are equal to or # larger than the midpoint values of the binsplot(MinPred, Labels=TRUE)