plot.GoodPretreatContCont function

Graphically illustrates the theoretical plausibility of finding a good pretreatment predictor in the continuous-continuous case

Graphically illustrates the theoretical plausibility of finding a good pretreatment predictor in the continuous-continuous case

This function provides a plot that displays the frequencies, percentages, or cumulative percentages of ρmin2\rho_{min}^{2} for a fixed value of δ\delta (given the observed variances of the true endpoint in the control and experimental treatment conditions and a specified grid of values for the unidentified parameter ρ(T0,T1)\rho(_{T_{0},T_{1}}); see GoodPretreatContCont). For details, see the online appendix of Alonso et al., submitted.

## S3 method for class 'GoodPretreatContCont' plot(x, main, col, Type="Percent", Labels=FALSE, Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

Arguments

  • x: An object of class GoodPretreatContCont. See GoodPretreatContCont.
  • main: The title of the plot.
  • col: The color of the bins.
  • Type: The type of plot that is produced. When Type=Freq or Type=Percent, the Y-axis shows frequencies or percentages of ρmin2\rho_{min}^{2}. When Type=CumPerc, the Y-axis shows cumulative percentages of ρmin2\rho_{min}^{2}. Default "Percent".
  • Labels: Logical. When Labels=TRUE, the percentage of ρmin2\rho_{min}^{2} values that are equal to or larger than the midpoint value of each of the bins are displayed (on top of each bin). Only applies when Type=Freq or Type=Percent. Default FALSE.
  • Par: Graphical parameters for the plot. Default par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)).
  • ...: Extra graphical parameters to be passed to hist().

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (submitted). Validating predictors of therapeutic success: a causal inference approach.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also

GoodPretreatContCont

Examples

# compute rho^2_min in the setting where the variances of T in the control # and experimental treatments equal 100 and 120, delta is fixed at 50, # and the grid G={0, .01, ..., 1} is considered for the counterfactual # correlation rho_T0T1: MinPred <- GoodPretreatContCont(T0T0 = 100, T1T1 = 120, Delta = 50, T0T1 = seq(0, 1, by = 0.01)) # Plot the results (use percentages on Y-axis) plot(MinPred, Type="Percent") # Same plot, but add the percentages of ICA values that are equal to or # larger than the midpoint values of the bins plot(MinPred, Labels=TRUE)
  • Maintainer: Wim Van der Elst
  • License: GPL (>= 2)
  • Last published: 2020-07-04

Useful links