Plots the distribution of the individual causal effect based on S.
Plots the distribution of the individual causal effect based on S.
Plots the distribution of ΔTj|Sj and the 1−α% CIs for the mean and median ρT0T1 values (and optionally, for other user-requested ρT0T1 values).
## S3 method for class 'Predict.Treat.ContCont'plot(x, Xlab, Main, Mean.T0T1=FALSE, Median.T0T1=TRUE,Specific.T0T1="none", alpha=0.05, Cex.Legend=1,...)## S3 method for class 'Predict.Treat.Multivar.ContCont'plot(x, Xlab, Main, Mean.T0T1=FALSE, Median.T0T1=TRUE,Specific.T0T1="none", alpha=0.05, Cex.Legend=1,...)
Arguments
x: An object of class Predict.Treat.ContCont or Predict.Treat.Multivar.ContCont. See Predict.Treat.ContCont or Predict.Treat.Multivar.ContCont.
Xlab: The legend of the X-axis of the plot. Default "ΔTj|Sj".
Main: The title of the PCA plot. Default " ".
Mean.T0T1: Logical. When Mean.T0T1=TRUE, the 1−α% CI for the mean ρT0T1 value (i.e., the mean of all valid ρT0T1 values in x) is shown. Default FALSE.
Median.T0T1: Logical. When Median.T0T1=TRUE, the 1−α% CI for the median ρT0T1 value is shown. Default TRUE.
Specific.T0T1: Optional. A scalar that specifies a particular value ρT0T1 for which the 1−α% CI is shown. Default "none".
alpha: The α level to be used in the computation of the CIs. Default 0.05.
Cex.Legend: The size of the legend of the plot. Default 1.
...: Other arguments to be passed to the plot() function.
References
Alonso, A., Van der Elst, W., & Molenberghs, G. (submitted). Validating predictors of therapeutic success: a causal inference approach.
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
See Also
Predict.Treat.ContCont
Examples
# Generate the vector of PCA.ContCont values when rho_T0S=.3, rho_T1S=.9, # sigma_T0T0=2, sigma_T1T1=2,sigma_SS=2, and the grid of values {-1, -.99, # ..., 1} is considered for the correlations between T0 and T1:PCA <- PCA.ContCont(T0S=.3, T1S=.9, T0T0=2, T1T1=2, SS=2,T0T1=seq(-1,1, by=.01))# Obtain the predicted value T for a patient who scores S = 10, using beta=5,# SS=2, mu_S=4Predict <- Predict.Treat.ContCont(x=PCA, S=10, Beta=5, SS=2, mu_S=4)# examine the resultssummary(Predict)# plot Delta_T_j given S_T and 95% CI based on # the mean value of the valid rho_T0T1 results plot(Predict, Mean.T0T1=TRUE, Median.T0T1=FALSE,xlim=c(4,13))# plot Delta_T_j given S_T and 99% CI using # rho_T0T1=.8 plot(Predict, Mean.T0T1=FALSE, Median.T0T1=FALSE,Specific.T0T1=.6, alpha=0.01, xlim=c(4,13))