plot.Predict.Treat.ContCont function

Plots the distribution of the individual causal effect based on SS.

Plots the distribution of the individual causal effect based on SS.

Plots the distribution of ΔTj\Delta T_j|SjS_j and the 1α1-\alpha% CIs for the mean and median ρT0T1\rho_{T0T1} values (and optionally, for other user-requested ρT0T1\rho_{T0T1} values).

## S3 method for class 'Predict.Treat.ContCont' plot(x, Xlab, Main, Mean.T0T1=FALSE, Median.T0T1=TRUE, Specific.T0T1="none", alpha=0.05, Cex.Legend=1, ...) ## S3 method for class 'Predict.Treat.Multivar.ContCont' plot(x, Xlab, Main, Mean.T0T1=FALSE, Median.T0T1=TRUE, Specific.T0T1="none", alpha=0.05, Cex.Legend=1, ...)

Arguments

  • x: An object of class Predict.Treat.ContCont or Predict.Treat.Multivar.ContCont. See Predict.Treat.ContCont or Predict.Treat.Multivar.ContCont.
  • Xlab: The legend of the X-axis of the plot. Default "ΔTj\Delta T_j|SjS_j".
  • Main: The title of the PCA plot. Default " ".
  • Mean.T0T1: Logical. When Mean.T0T1=TRUE, the 1α1-\alpha% CI for the mean ρT0T1\rho_{T0T1} value (i.e., the mean of all valid ρT0T1\rho_{T0T1} values in x) is shown. Default FALSE.
  • Median.T0T1: Logical. When Median.T0T1=TRUE, the 1α1-\alpha% CI for the median ρT0T1\rho_{T0T1} value is shown. Default TRUE.
  • Specific.T0T1: Optional. A scalar that specifies a particular value ρT0T1\rho_{T0T1} for which the 1α1-\alpha% CI is shown. Default "none".
  • alpha: The α\alpha level to be used in the computation of the CIs. Default 0.050.05.
  • Cex.Legend: The size of the legend of the plot. Default 11.
  • ...: Other arguments to be passed to the plot()plot() function.

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (submitted). Validating predictors of therapeutic success: a causal inference approach.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also

Predict.Treat.ContCont

Examples

# Generate the vector of PCA.ContCont values when rho_T0S=.3, rho_T1S=.9, # sigma_T0T0=2, sigma_T1T1=2,sigma_SS=2, and the grid of values {-1, -.99, # ..., 1} is considered for the correlations between T0 and T1: PCA <- PCA.ContCont(T0S=.3, T1S=.9, T0T0=2, T1T1=2, SS=2, T0T1=seq(-1, 1, by=.01)) # Obtain the predicted value T for a patient who scores S = 10, using beta=5, # SS=2, mu_S=4 Predict <- Predict.Treat.ContCont(x=PCA, S=10, Beta=5, SS=2, mu_S=4) # examine the results summary(Predict) # plot Delta_T_j given S_T and 95% CI based on # the mean value of the valid rho_T0T1 results plot(Predict, Mean.T0T1=TRUE, Median.T0T1=FALSE, xlim=c(4, 13)) # plot Delta_T_j given S_T and 99% CI using # rho_T0T1=.8 plot(Predict, Mean.T0T1=FALSE, Median.T0T1=FALSE, Specific.T0T1=.6, alpha=0.01, xlim=c(4, 13))
  • Maintainer: Wim Van der Elst
  • License: GPL (>= 2)
  • Last published: 2020-07-04

Useful links