plot.Predict.Treat.T0T1.ContCont function

Plots the distribution of the individual causal effect based on SS for a specific assumed correlation between the counterfactuals.

Plots the distribution of the individual causal effect based on SS for a specific assumed correlation between the counterfactuals.

Plots the distribution of ΔTj\Delta T_j|SjS_j and the 1α1-\alpha% CIs for a user-requested ρT0T1\rho_{T0T1} value). The function is similar to plot.Predict.Treat.ContCont, but it is applied to an object of class Predict.Treat.T0T1.ContCont (rather than to an object of class Predict.Treat.ContCont). This object contains only one ρT0T1\rho_{T0T1} value (rather than a vector of ρT0T1\rho_{T0T1} values), and thus the plot automatically uses the considered ρT0T1\rho_{T0T1} value in the object x to compute the 1α1-\alpha% CI for ΔTj\Delta T_j|SjS_j.

## S3 method for class 'Predict.Treat.T0T1.ContCont' plot(x, Xlab, Main, alpha=0.05, Cex.Legend=1, ...)

Arguments

  • x: An object of class Predict.Treat.T0T1.ContCont. See Predict.Treat.T0T1.ContCont.
  • Xlab: The legend of the X-axis of the plot. Default "ΔTj\Delta T_j|SjS_j".
  • Main: The title of the PCA plot. Default " ".
  • alpha: The α\alpha level to be used in the computation of the CIs. Default 0.050.05.
  • Cex.Legend: The size of the legend of the plot. Default 11.
  • ...: Other arguments to be passed to the plot()plot() function.

References

Alonso, A., Van der Elst, W., & Molenberghs, G. (submitted). Validating predictors of therapeutic success: a causal inference approach.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also

Predict.Treat.T0T1.ContCont

Examples

# Generate the vector of PCA.ContCont values when rho_T0S=.3, rho_T1S=.9, # sigma_T0T0=2, sigma_T1T1=2,sigma_SS=2, and the grid of values {-1, -.99, # ..., 1} is considered for the correlations between T0 and T1: PCA <- PCA.ContCont(T0S=.3, T1S=.9, T0T0=2, T1T1=2, SS=2, T0T1=seq(-1, 1, by=.01)) # Obtain the predicted value T for a patient who scores S = 10, using beta=5, # SS=2, mu_S=4, assuming rho_T0T1=.6 indiv <- Predict.Treat.T0T1.ContCont(x=PCA, S=10, Beta=5, SS=2, mu_S=4, T0T1=.6) summary(indiv) # obtain a plot with the 95% CI around delta T_j | S_j (assuming rho_T0T1=.6) plot(indiv, xlim=c(5, 12))
  • Maintainer: Wim Van der Elst
  • License: GPL (>= 2)
  • Last published: 2020-07-04

Useful links