Checking convergence of an MCMC chain by using the Gelman-Rubin algorithm
Checking convergence of an MCMC chain by using the Gelman-Rubin algorithm
check_cdt_samples_convergence Checking convergence of an MCMC chain by using the Gelman-Rubin algorithm
check_cdt_samples_convergence(cdt_samples)
Arguments
cdt_samples: the @sample slot of a cd.fit.mcmc S4 object (see package coarseDataTools)
Returns
TRUE if the Gelman Rubin test for convergence was successful, FALSE otherwise
Details
This function splits an MCMC chain in two halves and uses the Gelman-Rubin algorithm to assess convergence of the chain by comparing its two halves.
Examples
## Not run:## Note the following examples use an MCMC routine## to estimate the serial interval distribution from data,## so they may take a few minutes to run## load data on rotavirusdata("MockRotavirus")## estimate the serial interval from dataSI_fit <- coarseDataTools::dic.fit.mcmc(dat = MockRotavirus$si_data, dist="G", init_pars=init_mcmc_params(MockRotavirus$si_data,"G"), burnin =1000, n.samples =5000)## use check_cdt_samples_convergence to check convergenceconverg_diag <- check_cdt_samples_convergence(SI_fit@samples)converg_diag
## End(Not run)