coarse2estim function

Link coarseDataTools and EpiEstim

Link coarseDataTools and EpiEstim

coarse2estim Transforms outputs of coarseDataTools::dic.fit.mcmc to right format for input into estimate_R

coarse2estim(x = NULL, dist = x@dist, samples = x@samples, thin = 10)

Arguments

  • x: An object generated by function coarseDataTools::dic.fit.mcmc, containing posterior estimates of the serial interval distribution.

  • dist: The parametric distribution used when estimating the serial interval. #' Should be one of "G" (Gamma), "W" (Weibull), "L" (Lognormal), "off1G" (Gamma shifted by 1), "off1W" (Weibull shifted by 1), or "off1L" (Lognormal shifted by 1). If not present, computed automatically from x.

  • samples: A dataframe containing the posterior samples of serial interval parameters corresponding to the parametric choice specified in dist. If not present, computed automatically from x.

  • thin: A positive integer corresponding to thinning parameter; of the posterior sample of serial interval distributions in x, only 1 in thin

    will be kept, the rest will be discarded.

Returns

A list with two elements:

  • si_sample: a matrix where each column gives one distribution of the serial interval to be explored, obtained from x by thinning the MCMC chain.
  • si_parametric_distr: the parametric distribution used when estimating the serial interval stored in x.

Examples

## Not run: ## Note the following examples use an MCMC routine ## to estimate the serial interval distribution from data, ## so they may take a few minutes to run ## load data on rotavirus data("MockRotavirus") ## estimate the serial interval from data SI.fit <- coarseDataTools::dic.fit.mcmc(dat = MockRotavirus$si_data, dist = "G", init.pars = init_mcmc_params(MockRotavirus$si_data, "G"), burnin = 1000, n.samples = 5000) ## use coarse2estim to turn this in the right format for estimate_R si_sample <- coarse2estim(SI.fit, thin = 10)$si_sample ## use estimate_R to estimate the reproduction number ## based on these estimates of the serial interval R_si_from_sample <- estimate_R(MockRotavirus$incidence, method="si_from_sample", si_sample=si_sample, config = make_config(list(n2 = 50))) plot(R_si_from_sample) ## End(Not run)

See Also

estimate_R

Author(s)

The Hackout3 Parameter Estimation team.

  • Maintainer: Anne Cori
  • License: GPL (>= 2)
  • Last published: 2021-01-07