This wrapper has been created so that several estimate_R objects can be plotted at the same time.
estimate_R_plots(..., legend =FALSE)
Arguments
...: Arguments of plot.estimate_R, but in addition, parameter x can be a objects of class estimate_R (obtained as outputs of functions estimate_R or wallinga_teunis. If x is a list, and what='R' or what='all', all estimates of R are plotted on a single graph. This will only work if all the estimate_R objects in the list were computed using the same config$t_start and config$t_end
legend: A boolean (TRUE by default) governing the presence / absence of legends on the plots
Returns
a plot (if what = "incid", "R", or "SI") or a grob object (if what = "all").
Examples
## load data on pandemic flu in a school in 2009data("Flu2009")#### COMPARE THE INSTANTANEOUS AND CASE REPRODUCTION NUMBERS ###### estimate the instantaneous reproduction number## (method "non_parametric_si")R_instantaneous <- estimate_R(Flu2009$incidence, method ="non_parametric_si", config = list(t_start = seq(2,26), t_end = seq(8,32), si_distr = Flu2009$si_distr
))## estimate the case reproduction numberR_case <- wallinga_teunis(Flu2009$incidence, method ="non_parametric_si", config = list(t_start = seq(2,26), t_end = seq(8,32), si_distr = Flu2009$si_distr
))## visualise R estimates on the same plotestimate_R_plots(list(R_instantaneous, R_case), what ="R", options_R = list(col = c("blue","red")), legend =TRUE)#### COMPARE THE INSTANTANEOUS R ON SLIDING WEEKLY OR BIWEEKLY WINDOWS ####R_weekly <- estimate_R(Flu2009$incidence, method ="non_parametric_si", config = list(t_start = seq(9,26), t_end = seq(15,32), si_distr = Flu2009$si_distr
))R_biweekly <- estimate_R(Flu2009$incidence, method ="non_parametric_si", config = list(t_start = seq(2,19), t_end = seq(15,32), si_distr = Flu2009$si_distr
))## visualise R estimates on the same plotestimate_R_plots(list(R_weekly, R_biweekly), what ="R", options_R = list(col = c("blue","red")), legend =TRUE)