plot.estimate_R function

Plot outputs of estimate_r

Plot outputs of estimate_r

The plot method of estimate_r objects can be used to visualise three types of information. The first one shows the epidemic curve. The second one shows the posterior mean and 95% credible interval of the reproduction number. The estimate for a time window is plotted at the end of the time window. The third plot shows the discrete distribution(s) of the serial interval.

## S3 method for class 'estimate_R' plot( x, what = c("all", "incid", "R", "SI"), add_imported_cases = FALSE, options_I = list(col = palette(), transp = 0.7, xlim = NULL, ylim = NULL, interval = 1L, xlab = "Time", ylab = "Incidence"), options_R = list(col = palette(), transp = 0.2, xlim = NULL, ylim = NULL, xlab = "Time", ylab = "R"), options_SI = list(prob_min = 0.001, col = "black", transp = 0.25, xlim = NULL, ylim = NULL, xlab = "Time", ylab = "Frequency"), legend = TRUE, ... )

Arguments

  • x: The output of function estimate_R or function wallinga_teunis. To plot simultaneous outputs on the same plot use estimate_R_plots function

  • what: A string specifying what to plot, namely the incidence time series (what='incid'), the estimated reproduction number (what='R'), the serial interval distribution (what='SI', or all three (what='all')).

  • add_imported_cases: A boolean to specify whether, on the incidence time series plot, to add the incidence of imported cases.

  • options_I: For what = "incid" or "all". A list of graphical options:

    • col: A color or vector of colors used for plotting incid. By default uses the default R colors.
    • transp: A numeric value between 0 and 1 used to monitor transparency of the bars plotted. Defaults to 0.7.
    • xlim: A parameter similar to that in par, to monitor the limits of the horizontal axis
    • ylim: A parameter similar to that in par, to monitor the limits of the vertical axis
    • interval: An integer or character indicating the (fixed) size of the time interval used for plotting the incidence; defaults to 1 day.
    • xlab, ylab: Labels for the axes of the incidence plot
  • options_R: For what = "R" or "all". A list of graphical options:

    • col: A color or vector of colors used for plotting R. By default uses the default R colors.
    • transp: A numeric value between 0 and 1 used to monitor transparency of the 95%CrI. Defaults to 0.2.
    • xlim: A parameter similar to that in par, to monitor the limits of the horizontal axis
    • ylim: A parameter similar to that in par, to monitor the limits of the vertical axis
    • xlab, ylab: Labels for the axes of the R plot
  • options_SI: For what = "SI" or "all". A list of graphical options:

    • prob_min: A numeric value between 0 and 1. The SI distributions explored are only shown from time 0 up to the time t so that each distribution explored has probability < prob_min to be on any time step after t. Defaults to 0.001.
    • col: A color or vector of colors used for plotting the SI. Defaults to black.
    • transp: A numeric value between 0 and 1 used to monitor transparency of the lines. Defaults to 0.25
    • xlim: A parameter similar to that in par, to monitor the limits of the horizontal axis
    • ylim: A parameter similar to that in par, to monitor the limits of the vertical axis
    • xlab, ylab: Labels for the axes of the serial interval distribution plot
  • legend: A boolean (TRUE by default) governing the presence / absence of legends on the plots

  • ...: further arguments passed to other methods (currently unused).

Returns

a plot (if what = "incid", "R", or "SI") or a grob object (if what = "all").

Examples

## load data on pandemic flu in a school in 2009 data("Flu2009") ## estimate the instantaneous reproduction number ## (method "non_parametric_si") R_i <- estimate_R(Flu2009$incidence, method = "non_parametric_si", config = list(t_start = seq(2, 26), t_end = seq(8, 32), si_distr = Flu2009$si_distr ) ) ## visualise results plot(R_i, legend = FALSE) ## estimate the instantaneous reproduction number ## (method "non_parametric_si") R_c <- wallinga_teunis(Flu2009$incidence, method = "non_parametric_si", config = list(t_start = seq(2, 26), t_end = seq(8, 32), si_distr = Flu2009$si_distr ) ) ## produce plot of the incidence ## (with, on top of total incidence, the incidence of imported cases), ## estimated instantaneous and case reproduction numbers ## and serial interval distribution used p_I <- plot(R_i, "incid", add_imported_cases=TRUE) # plots the incidence p_SI <- plot(R_i, "SI") # plots the serial interval distribution p_Ri <- plot(R_i, "R", options_R = list(ylim = c(0, 4))) # plots the estimated instantaneous reproduction number p_Rc <- plot(R_c, "R", options_R = list(ylim = c(0, 4))) # plots the estimated case reproduction number gridExtra::grid.arrange(p_I, p_SI, p_Ri, p_Rc, ncol = 2)

See Also

estimate_R, wallinga_teunis and estimate_R_plots

Author(s)

Rolina van Gaalen rolina.van.gaalen@rivm.nl and Anne Cori a.cori@imperial.ac.uk ; S3 method by Thibaut Jombart

  • Maintainer: Anne Cori
  • License: GPL (>= 2)
  • Last published: 2021-01-07