Deviance Information Criterion (DIC)
Computes the Deviance Information Criterion for individual level models
epidic (burnin, niter, LLchain, LLpostmean)
burnin
: Burnin period for MCMCniter
: Number of MCMC iterationsLLchain
: Loglikelihood values from the MCMC outputLLpostmean
: Loglikelihood value of the model with posterior mean of estimates## Example 1: spatial SI model # generate 100 individuals x <- runif(100, 0, 10) y <- runif(100, 0, 10) covariate <- runif(100, 0, 2) out1 <- epidata(type = "SI", n = 100, Sformula = ~covariate, tmax = 15, sus.par = c(0.1, 0.3), beta = 5.0, x = x, y = y) unif_range <- matrix(c(0, 0, 10000, 10000), nrow = 2, ncol = 2) # estimate parameters mcmcout <- epimcmc(out1, tmax = 15, niter = 1500, Sformula = ~covariate, sus.par.ini = c(0.003, 0.01), beta.ini =0.01, pro.sus.var = c(0.1, 0.1),pro.beta.var = 0.5, prior.sus.par = unif_range, prior.sus.dist = c("uniform","uniform"), prior.beta.dist = "uniform", prior.beta.par = c(0, 10000), adapt = TRUE, acc.rate = 0.5 ) # store the estimates sus.parameters = c(mean(unlist(mcmcout$Estimates[1])), mean(unlist(mcmcout$Estimates[2]))) beta.par = mean(unlist(mcmcout$Estimates[3])) # likelihood value loglike <- epilike(out1, tmax = 15, Sformula = ~covariate, sus.par = sus.parameters, beta = beta.par) # deviance information criterion calculation for the above epidemic dic <- epidic(burnin = 500, niter = 1500, LLchain = mcmcout$Loglikelihood, LLpostmean = loglike) dic
Spiegelhalter, D., Best, N., Carlin, B., Van der Linde, A. (2002). Bayesian Measures of Model Complexity and Fit. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 64(4), 583-639.