epPCA function

epPCA: Principal Component Analysis (PCA) via ExPosition.

epPCA: Principal Component Analysis (PCA) via ExPosition.

Principal Component Analysis (PCA) via ExPosition.

epPCA(DATA, scale = TRUE, center = TRUE, DESIGN = NULL, make_design_nominal = TRUE, graphs = TRUE, k = 0)

Arguments

  • DATA: original data to perform a PCA on.
  • scale: a boolean, vector, or string. See expo.scale for details.
  • center: a boolean, vector, or string. See expo.scale for details.
  • DESIGN: a design matrix to indicate if rows belong to groups.
  • make_design_nominal: a boolean. If TRUE (default), DESIGN is a vector that indicates groups (and will be dummy-coded). If FALSE, DESIGN is a dummy-coded matrix.
  • graphs: a boolean. If TRUE (default), graphs and plots are provided (via epGraphs)
  • k: number of components to return.

Details

epPCA performs principal components analysis on a data matrix.

Returns

See corePCA for details on what is returned.

References

Abdi, H., and Williams, L.J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433-459.

Abdi, H. (2007). Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics.Thousand Oaks (CA): Sage. pp. 907-912.

Author(s)

Derek Beaton

See Also

corePCA, epMDS, epGPCA

Examples

data(words) pca.words.res <- epPCA(words$data)
  • Maintainer: Derek Beaton
  • License: GPL-2
  • Last published: 2019-01-07

Useful links