ExtremalDep1.0.0 package

Extremal Dependence Models

angular.plot

Angular density plot.

angular

Estimation of the angular density, angular measure and random generati...

beed.boot

Bootstrap Resampling and Bernstein Estimation of Extremal Dependence

beed.confband

Nonparametric Bootstrap Confidence Intervals

beed

Bernstein Polynomials Based Estimation of Extremal Dependence

bic

Extract the Bayesian Information Criterion

desn

Univariate extended skew-normal distribution

dest

Univariate extended skew-t distribution

dExtDep

Parametric and non-parametric density of Extremal Dependence

dGEV

The Generalized Extreme Value Distribution

diagnostics

Diagnostics plots for MCMC algorithm.

dim_ExtDep

Dimensions calculations for parametric extremal dependence models

dmesn

Bivariate and trivariate extended skew-normal distribution

dmest

Bivariate and trivariate extended skew-t distribution

ellipse

Level sets for bivariate normal, student-t and skew-normal distributio...

est

Extract the estimated parameter

ExtQ

Univariate Extreme Quantile

fExtDep.np

Non-parametric extremal dependence estimation

fExtDep

Extremal dependence estimation

fExtDepSpat

Fitting of a max-stable process

fGEV

Fitting of the Generalized Extreme Value Distribution

index.ExtDep

Index of extremal dependence

lambda.HR

Valid set of parameters for the 3-dimensional Husler-Reiss model.

madogram

Madogram-based estimation of the Pickands Dependence Function

method

Extract the method attribute

model

Extract the model attribute

PAMfmado

Clustering of maxima

pExtDep

Parametric and non-parametric distribution function of Extremal Depend...

pFailure

Probability of falling into a failure region

pickands.plot

Plot for the Pickands dependence function.

returns.plot

Plot some return levels.

returns

Compute return values

rExtDep

Parametric and semi-parametric random generator of extreme events

rExtDepSpat

Random generation of max-stable processes

simplex

Definition of a multivariate simplex

StdErr

Extract the standard errors of estimated parameters

tic

Extract the Takeuchi Information Criterion

trans2GEV

Transformation to GEV distribution

trans2UFrechet

Transformation to unit Frechet distribution

A set of procedures for parametric and non-parametric modelling of the dependence structure of multivariate extreme-values is provided. The statistical inference is performed with non-parametric estimators, likelihood-based estimators and Bayesian techniques. It adapts the methodologies of Beranger and Padoan (2015) <doi:10.48550/arXiv.1508.05561>, Marcon et al. (2016) <doi:10.1214/16-EJS1162>, Marcon et al. (2017) <doi:10.1002/sta4.145>, Marcon et al. (2017) <doi:10.1016/j.jspi.2016.10.004> and Beranger et al. (2021) <doi:10.1007/s10687-019-00364-0>. This package also allows for the modelling of spatial extremes using flexible max-stable processes. It provides simulation algorithms and fitting procedures relying on the Stephenson-Tawn likelihood as per Beranger at al. (2021) <doi:10.1007/s10687-020-00376-1>.

  • Maintainer: Simone Padoan
  • License: GPL (>= 2)
  • Last published: 2025-08-21