plot_likelihood(object, date =NULL, twilight.index =NULL)
Arguments
object: either output from make.prerun.object or run.particle.filter
date: either NULL or a date (possibly with time) closest to the twilight you wan to be plotted
twilight.index: number of likelihood surface to be plotted
Returns
'NULL'
Details
function plots likelihoods before particle filter run, so these are pure results of calibrations without any movement model
Examples
File<-system.file("extdata","Godwit_TAGS_format.csv", package ="FLightR")# to run example fast we will cut the real data file by 2013 Aug 20Proc.data<-get.tags.data(File, end.date=as.POSIXct('2013-07-02', tz='GMT'))Calibration.periods<-data.frame( calibration.start=as.POSIXct(c(NA,"2014-05-05"), tz='GMT'), calibration.stop=as.POSIXct(c("2013-08-20",NA), tz='GMT'), lon=5.43, lat=52.93)#use c() also for the geographic coordinates, if you have more than one calibration location# (e. g., lon=c(5.43, 6.00), lat=c(52.93,52.94))# NB Below likelihood.correction is set to FALSE for fast run! # Leave it as default TRUE for real examplesCalibration<-make.calibration(Proc.data, Calibration.periods, likelihood.correction=FALSE)Grid<-make.grid(left=0, bottom=50, right=10, top=56, distance.from.land.allowed.to.use=c(-Inf,Inf), distance.from.land.allowed.to.stay=c(-Inf,Inf))all.in<-make.prerun.object(Proc.data, Grid, start=c(5.43,52.93), Calibration=Calibration, threads=2)plot_likelihood(all.in, twilight.index=10)