DivRatios function

Diversification Measures

Diversification Measures

These functions compute the diversification ratio, the volatility weighted average correlation and concentration ratio of a portfolio.

dr(weights, Sigma) cr(weights, Sigma) rhow(weights, Sigma)

Arguments

  • weights: Vector: portfolio weights.
  • Sigma: Matrix: Variance-covariance matrix of portfolio assets.

Details

The diversification ratio of a portfolio is defined as:

DR(ω)=i=1NωiσiωΣω DR(\omega) = \frac{\sum_{i = 1}^N \omega_i \sigma_i}{\sqrt{\omega'\Sigma \omega}}

for a portfolio of NN assets and ωi\omega_i signify the weight of the i-th asset and σi\sigma_i its standard deviation and Σ\Sigma the variance-covariance matrix of asset returns. The diversification ratio is therefore the weighted average of the assets' volatilities divided by the portfolio volatility.

The concentration ration is defined as:

CR=i=1N(ωiσi)2(i=1Nωiσi)2 CR = \frac{\sum_{i = 1}^N (\omega_i \sigma_i)^2}{(\sum_{i = 1}^N\omega_i \sigma_i)^2}

and the volatility-weighted average correlation of the assets as:

ρ(ω)=i>jN(ωiσiωjσj)ρiji>jN(ωiσiωjσj) \rho(\omega) = \frac{\sum_{i > j}^N (\omega_i \sigma_i \omega_j\sigma_j)\rho_{ij}}{\sum_{i > j}^N (\omega_i \sigma_i \omega_j\sigma_j)}

The following equation between these measures does exist:

DR(ω)=1ρ(ω)(1CR(ω))+CR(ω) DR(\omega) = \frac{1}{\sqrt{\rho(\omega) (1 - CR(\omega)) +CR(\omega)}}

Returns

numeric, the value of the diversification measure.

References

Choueifaty, Y. and Coignard, Y. (2008): Toward Maximum Diversification, Journal of Portfolio Management, Vol. 34, No. 4, 40--51.

Choueifaty, Y. and Coignard, Y. and Reynier, J. (2011): Properties of the Most Diversified Portfolio, Working Paper, http://papers.ssrn.com

Author(s)

Bernhard Pfaff

See Also

PMD

Examples

data(MultiAsset) Rets <- returnseries(MultiAsset, method = "discrete", trim = TRUE) w <- Weights(PMD(Rets)) V <- cov(Rets) DR <- dr(w, V) CR <- cr(w, V) RhoW <- rhow(w, V) test <- 1 / sqrt(RhoW * (1 - CR) + CR) all.equal(DR, test)
  • Maintainer: Bernhard Pfaff
  • License: GPL (>= 3)
  • Last published: 2016-12-12

Useful links