S- and MM-Estimates of multivariate location and covariance matrix
Compute S- and MM-Estimates of multivariate location and covariance matrix
MMest_loccov(Y, control=MMcontrol(...), ...) Sest_loccov(Y, bdp=.5, control=Scontrol(...), ...) MMest_twosample(X, groups, control=MMcontrol(...), ...) Sest_twosample(X, groups, bdp=0.5, control=Scontrol(...), ...)
Y
: input matrix or data frameX
: input matrix or data framebdp
: breakdown point, defaults to 0.5groups
: grouping variablecontrol
: a list with control parameters for tuning the S- or MM-estimate and its computing algorithm, seeScontrol
and MMcontrol
....
: further arguments to be passed to CovMMest()
This functions are internal, wrappers around the functions Sest()
CovMMest()
.
Return lists with the following components:
Mu: location
Gamma: shape
scale: scale=det^(1/(2*m))
Sigma: covariance matrix
c1: tuning parameter of the loss function for MM-estimation
SMu: location of the initial S-estimate
SGamma: shape of the initial S-estimate
SSigma: covariance matrix of the initial S-estimate
b: tuning parameters used in Tukey biweight loss function for S-estimation, as determined by bdp
w: scaled weights
outflag: outlier flags
Y <- matrix(rnorm(50*5), ncol=5) (MMests <- MMest_loccov(Y)) (Sests <- Sest_loccov(Y, bdp = 0.25)) Y1 <- matrix(rnorm(50*5), ncol=5) Y2 <- matrix(rnorm(50*5), ncol=5) Ybig <- rbind(Y1,Y2) grp <- c(rep(1,50),rep(2,50)) (MMests <- MMest_twosample(Ybig, grp))
Useful links