MMest_loccov function

S- and MM-Estimates of multivariate location and covariance matrix

S- and MM-Estimates of multivariate location and covariance matrix

Compute S- and MM-Estimates of multivariate location and covariance matrix

MMest_loccov(Y, control=MMcontrol(...), ...) Sest_loccov(Y, bdp=.5, control=Scontrol(...), ...) MMest_twosample(X, groups, control=MMcontrol(...), ...) Sest_twosample(X, groups, bdp=0.5, control=Scontrol(...), ...)

Arguments

  • Y: input matrix or data frame
  • X: input matrix or data frame
  • bdp: breakdown point, defaults to 0.5
  • groups: grouping variable
  • control: a list with control parameters for tuning the S- or MM-estimate and its computing algorithm, seeScontrol and MMcontrol.
  • ...: further arguments to be passed to CovMMest()

Details

This functions are internal, wrappers around the functions Sest() CovMMest().

Returns

Return lists with the following components:

  • Mu: location

  • Gamma: shape

  • scale: scale=det^(1/(2*m))

  • Sigma: covariance matrix

  • c1: tuning parameter of the loss function for MM-estimation

  • SMu: location of the initial S-estimate

  • SGamma: shape of the initial S-estimate

  • SSigma: covariance matrix of the initial S-estimate

  • b: tuning parameters used in Tukey biweight loss function for S-estimation, as determined by bdp

  • w: scaled weights

  • outflag: outlier flags

Examples

Y <- matrix(rnorm(50*5), ncol=5) (MMests <- MMest_loccov(Y)) (Sests <- Sest_loccov(Y, bdp = 0.25)) Y1 <- matrix(rnorm(50*5), ncol=5) Y2 <- matrix(rnorm(50*5), ncol=5) Ybig <- rbind(Y1,Y2) grp <- c(rep(1,50),rep(2,50)) (MMests <- MMest_twosample(Ybig, grp))
  • Maintainer: Valentin Todorov
  • License: GPL (>= 3)
  • Last published: 2024-10-07

Useful links