FastBandChol-package

Fast estimation of covariance matrix by banded Cholesky factor

Fast estimation of covariance matrix by banded Cholesky factor

Fast and numerically stable estimation of covariance matrix by banding the Cholesky factor using a modified Gram-Schmidt algorithm implemented in RcppArmadilo. See https://stat.umn.edu/~molst029 for details on the algorithm. package

Details

Package:FastBandChol
Type:Package
Version:0.1.0
Date:2015-08-22
License:GPL-2

Author(s)

Aaron Molstad

References

Rothman, A.J., Levina, E., and Zhu, J. (2010). A new approach to Cholesky-based covariance regularization in high dimensions. Biometrika, 97(3):539-550.

Examples

## set sample size and dimension n = 20 p = 100 ## create covariance with AR1 structure Sigma = matrix(0, nrow=p, ncol=p) for(l in 1:p){ for(m in 1:p){ Sigma[l,m] = .5^(abs(l-m)) } } ## simulation Normal data eo1 = eigen(Sigma) Sigma.sqrt = eo1$vec%*%diag(eo1$val^.5)%*%t(eo1$vec) X = t(Sigma.sqrt%*%matrix(rnorm(n*p), nrow=p, ncol=n)) ## compute estimates est.sample = banded.sample(X, bandwidth=4)$est est.chol = banded.chol(X, bandwidth=4)$est
  • Maintainer: Aaron Molstad
  • License: GPL-2
  • Last published: 2015-08-26

Useful links