Fast estimation of covariance matrix by banded Cholesky factor
Fast estimation of covariance matrix by banded Cholesky factor
Fast and numerically stable estimation of covariance matrix by banding the Cholesky factor using a modified Gram-Schmidt algorithm implemented in RcppArmadilo. See https://stat.umn.edu/~molst029 for details on the algorithm.
package
Details
Package:
FastBandChol
Type:
Package
Version:
0.1.0
Date:
2015-08-22
License:
GPL-2
Author(s)
Aaron Molstad
References
Rothman, A.J., Levina, E., and Zhu, J. (2010). A new approach to Cholesky-based covariance regularization in high dimensions. Biometrika, 97(3):539-550.
Examples
## set sample size and dimensionn =20p =100## create covariance with AR1 structureSigma = matrix(0, nrow=p, ncol=p)for(l in1:p){for(m in1:p){ Sigma[l,m]=.5^(abs(l-m))}}## simulation Normal dataeo1 = eigen(Sigma)Sigma.sqrt = eo1$vec%*%diag(eo1$val^.5)%*%t(eo1$vec)X = t(Sigma.sqrt%*%matrix(rnorm(n*p), nrow=p, ncol=n))## compute estimatesest.sample = banded.sample(X, bandwidth=4)$est
est.chol = banded.chol(X, bandwidth=4)$est