Analysis of fragmented time directionality to investigate feedbacks in time series. Tools provided by the package allow the analysis of feedback for a single time series and the analysis of feedback for a set of time series collected across a spatial domain.
package
Details
Package:
FeedbackTS
Type:
Package
Version:
1.5
Date:
2020-01-22
License:
GPL (>=2.0)
Depends:
methods, maps, mapdata, proj4, sp, gstat, automap, date
To analyze feedback in a single time series create a KDD object (Key Day Dataset) with the construction function kdd.from.raw.data and test fragmented time directionality with the function feedback.test .
To analyze the spatial pattern of feedback from a set of time series collected across a spatial domain, create indices of feedback with the function feedback.stats , map the index with map.statistic , krige the index with krige and test spatial variation in feedback with krige.test .
Soubeyrand, S., Morris, C. E. and Bigg, E. K. (2014). Analysis of fragmented time directionality in time series to elucidate feedbacks in climate data. Environmental Modelling and Software 61: 78-86.
Examples
#### load library## Not run: library(FeedbackTS)#### load data for site 6008 (Callagiddy station)data(rain.site.6008)#### load data of feedback and change-in-feedback indices in 88 sites across Australiadata(rain.feedback.stats)#### spatial coordinates of the 88 sitescoord=rain.feedback.stats[,3:4]######## ANALYSIS OF FEEDBACK WITH A SINGLE TIME SERIES#### build KDD objects from raw data (site 6008: Callagiddy station)## using a threshold value equal to 25KDD=kdd.from.raw.data(raw.data=rain.site.6008,keyday.threshold=25,nb.days=20, col.series=5,col.date=c(2,3,4),na.rm=TRUE,filter=NULL)#### test feedback and change in feedback with a single data series## using the thresholded data series## using difference of means of positive indicator values (i.e. rainfall occurrence)## computer intensive stage## Not run:par(mfrow=c(1,2), mar=c(5.1,4.1,4.1,2.1))feedback.test(object=KDD, test="feedback", operator="dmpiv", nb.rand=10^3, plots=TRUE)## End(Not run)######## ANALYSIS OF FEEDBACK WITH A SET OF TIME SERIES COLLECTED ACROSS SPACE#### map of feedback index computed from the whole data seriespar(mfrow=c(1,1), mar=c(0,0,0,0))stat1=rain.feedback.stats[["Feedback.whole.period"]]map.statistic(coord,stat1,cex.circles=c(3,0.2), region=list(border="Australia",xlim=c(110,155)), legend=list(x=c(rep(114,3),rep(123,2)),y=-c(37,39.5,42,37,39.5), xtext=c(rep(114,3),rep(123,2))+1,ytext=-c(37,39.5,42,37,39.5),digits=2), main="Feedback")#### variogram analysis and kriging of feedback index## computer intensive stage## Not run:par(mfrow=c(2,2), mar=c(5.1,4.1,4.1,2.1))kr1=krige(coordinates=coord, statistic=stat1, grid=list(x=seq(110,155,0.25),y=seq(-45,-11,0.25),border="Australia", proj="+proj=lcc +lat_1=-18 +lat_2=-36 +lat0=-25 +lon_0=140",degrees=TRUE), plots=TRUE)## End(Not run)#### test spatial variation in feedback index and plot test output## computer intensive stage## Not run:kt1=krige.test(krige.output=kr1,subregion=list(x=c(138,152,152,138),y=-c(40,40,33,33)), alternative="greater", nb.rand=2000)par(mfrow=c(1,2), mar=c(5.1,4.1,4.1,2.1))plot(kt1,digits=list(predict=3,pvalue=3),breaks=12)## End(Not run)