KT.output-class function

Class "KT.output"

Class "KT.output"

Output of the krige.test function. 1.1

class

Objects from the Class

Objects are created by calls of the krige.test function.

Slots

  • krige.output:: Object of class "list", output of the krige function.
  • subregion:: Object of class "list", two vectors x and y containing the latitudes and the longitudes, respectively, of the vertices of a polygon. The polygon defines a subregion where one supposes variation in the predicted index.
  • averageKrigingPrediction.rand:: Object of class "numeric" specifying the averages of the kriging predictions in subregion obtained with randomized data (here, a randomization is a random translation on a torus).
  • averageKrigingPrediction.obs:: Object of class "numeric" specifying the average of the kriging prediction in subregion obtained with observed data.
  • alternative:: Object of class "character", "greater" or "less".
  • p.value:: Object of class "numeric", p-value of the test.

Methods

  • [<-: signature(x = "KT.output", i = "ANY", j = "ANY", value = "ANY")
  • [: signature(x = "KT.output"): Extract one of the slots.
  • names: signature(x = "KT.output"): Prints slot names.
  • show: signature(object = "KT.output"): Prints all slots of the KDD object.
  • summary: signature(object = "KT.output"): Prints summary characteristics of the KDD object.
  • plot: signature(x = "KT.output"), i="ANY": Graphically displays contents of the object.

References

Soubeyrand, S., Morris, C. E. and Bigg, E. K. (2014). Analysis of fragmented time directionality in time series to elucidate feedbacks in climate data. Environmental Modelling and Software 61: 78-86.

Author(s)

Samuel Soubeyrand Samuel.Soubeyrand@avignon.inra.fr , Cindy E. Morris, E. Keith Bigg.

Examples

showClass("KT.output") #### load data of feedback and change-in-feedback indices in 88 sites across Australia data(rain.feedback.stats) #### spatial coordinates of the 88 sites coord=rain.feedback.stats[,3:4] #### map of feedback index computed from the whole data series stat1=rain.feedback.stats[["Feedback.whole.period"]] #### variogram analysis and kriging of feedback index ## Not run: par(mfrow=c(2,2), mar=c(5.1,4.1,4.1,2.1)) kr1=krige(coordinates=coord, statistic=stat1, grid=list(x=seq(110,155,0.25),y=seq(-45,-11,0.25),border="Australia", proj="+proj=lcc +lat_1=-18 +lat_2=-36 +lat0=-25 +lon_0=140",degrees=TRUE), plots=TRUE) ## End(Not run) #### test spatial variation in feedback index and plot test output ## computer intensive stage ## Not run: kt1=krige.test(krige.output=kr1,subregion=list(x=c(138,152,152,138),y=-c(40,40,33,33)), alternative="greater", nb.rand=2000) par(mfrow=c(1,2), mar=c(5.1,4.1,4.1,2.1)) plot(kt1,digits=list(predict=3,pvalue=3),breaks=12) ## End(Not run)
  • Maintainer: Samuel Soubeyrand
  • License: GPL (>= 2.0)
  • Last published: 2020-01-23

Useful links