ctprojmat function

Projection matrix for optimal combination cross-temporal reconciliation

Projection matrix for optimal combination cross-temporal reconciliation

This function computes the projection or the mapping matrix M\mathbf{M} and G\mathbf{G}, respectively, such that y~=My^=SctGy^\widetilde{\mathbf{y}} = \mathbf{M}\widehat{\mathbf{y}} = \mathbf{S}_{ct}\mathbf{G}\widehat{\mathbf{y}}, where y~\widetilde{\mathbf{y}} is the vector of the reconciled forecasts, y^\widehat{\mathbf{y}} is the vector of the base forecasts, Sct\mathbf{S}_{ct} is the cross-temporal structural matrix, and M=SctG\mathbf{M} = \mathbf{S}_{ct}\mathbf{G}. For further information regarding on the structure of these matrices, refer to Girolimetto et al. (2023).

ctprojmat(agg_mat, cons_mat, agg_order, comb = "ols", res = NULL, mat = "M", tew = "sum", ...)

Arguments

  • agg_mat: A (na×nbn_a \times n_b) numeric matrix representing the cross-sectional aggregation matrix. It maps the nbn_b bottom-level (free) variables into the nan_a upper (constrained) variables.

  • cons_mat: A (na×nn_a \times n) numeric matrix representing the cross-sectional zero constraints. It spans the null space for the reconciled forecasts.

  • agg_order: Highest available sampling frequency per seasonal cycle (max. order of temporal aggregation, mm), or a vector representing a subset of pp factors of mm.

  • comb: A string specifying the reconciliation method. For a complete list, see ctcov .

  • res: A (n×N(k+m)n \times N(k^\ast+m)) optional numeric matrix containing the in-sample residuals at all the temporal frequencies ordered from the lowest frequency to the highest frequency (columns) for each variable (rows). This matrix is used to compute some covariance matrices.

  • mat: A string specifying which matrix to return: "M" (default) for M\mathbf{M} and "G" for G\mathbf{G}.

  • tew: A string specifying the type of temporal aggregation. Options include: "sum" (simple summation, default), "avg" (average), "first" (first value of the period), and "last" (last value of the period).

  • ...: Arguments passed on to ctcov

    • mse: If TRUE (default) the residuals used to compute the covariance matrix are not mean-corrected.
    • shrink_fun: Shrinkage function of the covariance matrix, shrink_estim (default).

Returns

The projection matrix M\mathbf{M} (mat = "M") or the mapping matrix G\mathbf{G} (mat = "G").

Examples

# Cross-temporal framework (Z = X + Y, annual-quarterly) A <- t(c(1,1)) # Aggregation matrix for Z = X + Y Mct <- ctprojmat(agg_mat = A, agg_order = 4, comb = "ols") Gct <- ctprojmat(agg_mat = A, agg_order = 4, comb = "ols", mat = "G")

References

Girolimetto, D., Athanasopoulos, G., Di Fonzo, T. and Hyndman, R.J. (2024), Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues. International Journal of Forecasting, 40, 3, 1134-1151. tools:::Rd_expr_doi("10.1016/j.ijforecast.2023.10.003")

See Also

Utilities: FoReco2matrix(), aggts(), balance_hierarchy(), commat(), csprojmat(), cstools(), cttools(), df2aggmat(), lcmat(), recoinfo(), res2matrix(), shrink_estim(), teprojmat(), tetools(), unbalance_hierarchy()