teprojmat function

Projection matrix for optimal combination temporal reconciliation

Projection matrix for optimal combination temporal reconciliation

This function computes the projection or the mapping matrix M\mathbf{M} and G\mathbf{G}, respectively, such that y~=My^=SteGy^\widetilde{\mathbf{y}} = \mathbf{M}\widehat{\mathbf{y}} = \mathbf{S}_{te}\mathbf{G}\widehat{\mathbf{y}}, where y~\widetilde{\mathbf{y}} is the vector of the reconciled forecasts, y^\widehat{\mathbf{y}} is the vector of the base forecasts, Ste\mathbf{S}_{te} is the temporal structural matrix, and M=SteG\mathbf{M} = \mathbf{S}_{te}\mathbf{G}. For further information regarding on the structure of these matrices, refer to Girolimetto et al. (2023).

teprojmat(agg_order, comb = "ols", res = NULL, mat = "M", tew = "sum", ...)

Arguments

  • agg_order: Highest available sampling frequency per seasonal cycle (max. order of temporal aggregation, mm), or a vector representing a subset of pp factors of mm.

  • comb: A string specifying the reconciliation method. For a complete list, see tecov .

  • res: A (N(k+m)×1N(k^\ast+m) \times 1) optional numeric vector containing the in-sample residuals at all the temporal frequencies ordered from the lowest frequency to the highest frequency. This vector is used to compute come covariance matrices.

  • mat: A string specifying which matrix to return: "M" (default) for M\mathbf{M} and "G" for G\mathbf{G}.

  • tew: A string specifying the type of temporal aggregation. Options include: "sum" (simple summation, default), "avg" (average), "first" (first value of the period), and "last" (last value of the period).

  • ...: Arguments passed on to tecov

    • mse: If TRUE (default) the residuals used to compute the covariance matrix are not mean-corrected.
    • shrink_fun: Shrinkage function of the covariance matrix, shrink_estim (default)

Returns

The projection matrix M\mathbf{M} (mat = "M") or the mapping matrix G\mathbf{G} (mat = "G").

Examples

# Temporal framework (annual-quarterly) Mte <- teprojmat(agg_order = 4, comb = "ols") Gte <- teprojmat(agg_order = 4, comb = "ols", mat = "G")

References

Girolimetto, D., Athanasopoulos, G., Di Fonzo, T. and Hyndman, R.J. (2024), Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues. International Journal of Forecasting, 40, 3, 1134-1151. tools:::Rd_expr_doi("10.1016/j.ijforecast.2023.10.003")

See Also

Utilities: FoReco2matrix(), aggts(), balance_hierarchy(), commat(), csprojmat(), cstools(), ctprojmat(), cttools(), df2aggmat(), lcmat(), recoinfo(), res2matrix(), shrink_estim(), tetools(), unbalance_hierarchy()