Mds of a dissimilarity matrix
Computes the multidimensional scaling of a matrix of dissimilarities between stimuli. Mds is based on smacof algorithm. The Mds configuration is rotated in order to get orthogonal dimensions sorted by decreasing variance.
MdsDiss(MatDissimil, ndim = 2, metric = TRUE, ties = "primary", itmax = 5000, eps = 1e-06)
MatDissimil
: A matrix of dissimilaritiesndim
: Dimension of the Mdsmetric
: Metric or not metric Mdsties
: Treatment of ties in case of non metric Mdsitmax
: Maximum number of iterationseps
: Epsilon for Mds computationList of the following components : - Config: Mds configuration of the stimuli
Percent: Percentage of inertia of the dimensions of Mds
Stress: Stress of the Mds solution
data(AromaSort) Aroma<-SortingPartition(AromaSort) ListDissimil<-Dissimil(Aroma) MatDissim<-apply(simplify2array(ListDissimil),c(1,2),'sum') Mdsres<-MdsDiss(MatDissim)
Useful links