MdsDiss function

Mds of a dissimilarity matrix

Mds of a dissimilarity matrix

Computes the multidimensional scaling of a matrix of dissimilarities between stimuli. Mds is based on smacof algorithm. The Mds configuration is rotated in order to get orthogonal dimensions sorted by decreasing variance.

MdsDiss(MatDissimil, ndim = 2, metric = TRUE, ties = "primary", itmax = 5000, eps = 1e-06)

Arguments

  • MatDissimil: A matrix of dissimilarities
  • ndim: Dimension of the Mds
  • metric: Metric or not metric Mds
  • ties: Treatment of ties in case of non metric Mds
  • itmax: Maximum number of iterations
  • eps: Epsilon for Mds computation

Returns

List of the following components : - Config: Mds configuration of the stimuli

  • Percent: Percentage of inertia of the dimensions of Mds

  • Stress: Stress of the Mds solution

Examples

data(AromaSort) Aroma<-SortingPartition(AromaSort) ListDissimil<-Dissimil(Aroma) MatDissim<-apply(simplify2array(ListDissimil),c(1,2),'sum') Mdsres<-MdsDiss(MatDissim)
  • Maintainer: Philippe Courcoux
  • License: GPL-2
  • Last published: 2017-12-17

Useful links