MultiGASFor function

Forecast with multivariate GAS models

Forecast with multivariate GAS models

Forecast with multivariate GAS models. One-step ahead prediction of the conditional density is available in closed form. Multistep ahead prediction are performed by simulation as detailed in Blasques et al. (2016).

MultiGASFor(mGASFit, H = NULL, Roll = FALSE, out = NULL, B = 10000, Bands = c(0.1, 0.15, 0.85, 0.9), ReturnDraws = FALSE)

Arguments

  • mGASFit: An object of the class mGASFit created using the function MultiGASFit

  • H: numeric Forecast horizon. Ignored if Roll = TRUE

  • Roll: logical Forecast should be made using a rolling procedure ? Note that if Roll = TRUE, then out has to be specified.

  • out: matrix of out of sample observation of dimension H x N for rolling forecast. N refers to the cross sectional dimension.

  • B: numeric Number of draws from the iH-step ahead distribution if Roll = FALSE.

  • Bands: numeric Vector of probabilities representing the confidence band levels for multistep ahead parameters forecasts. Only if Roll = FALSE.

  • ReturnDraws: logical Return the draws from the multistep ahead predictive distribution when Roll = FALSE ?

Returns

An object of the class mGASFor

References

Blasques F, Koopman SJ, Lasak K, and Lucas, A (2016). "In-sample Confidence Bands and Out-of-Sample Forecast Bands for Time-Varying Parameters in Observation-Driven Models." International Journal of Forecasting, 32(3), 875-887. tools:::Rd_expr_doi("10.1016/j.ijforecast.2016.04.002") .

Author(s)

Leopoldo Catania

Examples

## Not run: # Specify a GAS model with multivatiate Student-t conditional # distribution and time-varying scales and correlations. # Stock returns forecast set.seed(123) data("StockIndices") mY = StockIndices[, 1:2] # Specification mvt GASSpec = MultiGASSpec(Dist = "mvt", ScalingType = "Identity", GASPar = list(location = FALSE, scale = TRUE, correlation = TRUE, shape = FALSE)) # Perform H-step ahead forecast with confidence bands # Estimation Fit = MultiGASFit(GASSpec, mY) # Forecast Forecast = MultiGASFor(Fit, H = 50) Forecast # Perform 1-Step ahead rolling forecast InSampleData = mY[1:1000, ] OutSampleData = mY[1001:2404, ] # Estimation Fit = MultiGASFit(GASSpec, InSampleData) Forecast = MultiGASFor(Fit, Roll = TRUE, out = OutSampleData) Forecast ## End(Not run)
  • Maintainer: Leopoldo Catania
  • License: GPL-3
  • Last published: 2024-08-19