Establish whether each of the corresponding edges are significantly different in two groups, with the de-sparsified estimator of if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="jankova2015confidence",package="GGMncv",cached_env=.Rdpack.currefs) .
For low-dimensional settings, i.e., when the number of observations far exceeds the number of nodes, this function likely has limited utility and a non regularized approach should be used for comparing edges (see for example GGMnonreg ).
Further, whether the de-sparsified estimator provides nominal error rates remains to be seen, at least across a range of conditions. For example, the simulation results in if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="williams_2021;textual",package="GGMncv",cached_env=.Rdpack.currefs)
demonstrated that the confidence intervals can have (severely) compromised coverage properties (whereas non-regularized methods had coverage at the nominal level).
Examples
# data# note: all edges equalY1 <- MASS::mvrnorm(250, rep(0,10), Sigma = diag(10))Y2 <- MASS::mvrnorm(250, rep(0,10), Sigma = diag(10))# fit models# note: atan penalty by default# group 1fit1 <- ggmncv(cor(Y1), n = nrow(Y1), progress =FALSE)# group 2fit2 <- ggmncv(cor(Y2), n = nrow(Y2), progress =FALSE)# comparecompare_ggms <- compare_edges(fit1, fit2)
compare_ggms