score_binary function

Binary Classification

Binary Classification

score_binary(estimate, true, model_name = NULL)

Arguments

  • estimate: Matrix. Estimated graph (adjacency matrix)
  • true: Matrix. True graph (adjacency matrix)
  • model_name: Character string. Name of the method or penalty (defaults to NULL)

Returns

A data frame containing specificity (1 - false positive rate), sensitivity (true positive rate), precision (1 - false discovery rate), f1_score, and mcc (Matthews correlation coefficient).

Examples

p <- 20 n <- 500 true_net <- gen_net(p = p, edge_prob = 0.25) y <- MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = true_net$cors) # default fit_atan <- ggmncv(R = cor(y), n = nrow(y), penalty = "atan", progress = FALSE) # lasso fit_l1 <- ggmncv(R = cor(y), n = nrow(y), penalty = "lasso", progress = FALSE) # atan scores score_binary(estimate = true_net$adj, true = fit_atan$adj, model_name = "atan") score_binary(estimate = fit_l1$adj, true = true_net$adj, model_name = "lasso")
  • Maintainer: Donald Williams
  • License: GPL-2
  • Last published: 2021-12-15

Useful links