rotations function

Rotations

Rotations

Optimize factor loading rotation objective.

oblimin(A, Tmat=diag(ncol(A)), gam=0, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) quartimin(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) targetT(A, Tmat=diag(ncol(A)), Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0, L=NULL) targetQ(A, Tmat=diag(ncol(A)), Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0, L=NULL) pstT(A, Tmat=diag(ncol(A)), W=NULL, Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0, L=NULL) pstQ(A, Tmat=diag(ncol(A)), W=NULL, Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0, L=NULL) oblimax(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) entropy(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) quartimax(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5,maxit=1000,randomStarts=0) Varimax(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) simplimax(A, Tmat=diag(ncol(A)), k=nrow(A), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) bentlerT(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) bentlerQ(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) tandemI(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) tandemII(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) geominT(A, Tmat=diag(ncol(A)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) geominQ(A, Tmat=diag(ncol(A)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) bigeominT(A, Tmat=diag(ncol(A)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) bigeominQ(A, Tmat=diag(ncol(A)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) cfT(A, Tmat=diag(ncol(A)), kappa=0, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) cfQ(A, Tmat=diag(ncol(A)), kappa=0, normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) equamax(A, Tmat=diag(ncol(A)), kappa=ncol(A)/(2*nrow(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) parsimax(A, Tmat=diag(ncol(A)), kappa=(ncol(A)-1)/(ncol(A)+nrow(A)-2), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts = 0) infomaxT(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) infomaxQ(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) mccammon(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) varimin(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, randomStarts=0) bifactorT(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000,randomStarts=0) bifactorQ(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000,randomStarts=0) lpT(A, Tmat=diag(ncol(A)), p=1, normalize=FALSE, eps=1e-05, maxit=1000, randomStarts=0, gpaiter=5) lpQ(A, Tmat=diag(ncol(A)), p=1, normalize=FALSE, eps=1e-05, maxit=1000, randomStarts=0, gpaiter=5)

Arguments

  • A: an initial loadings matrix to be rotated.
  • Tmat: initial rotation matrix.
  • gam: 0=Quartimin, .5=Biquartimin, 1=Covarimin.
  • Target: rotation target for objective calculation.
  • W: weighting of each element in target.
  • k: number of close to zero loadings.
  • delta: constant added to Lambda2Lambda^2 in the objective calculation.
  • kappa: see details.
  • normalize: parameter passed to optimization routine (GPForth or GPFoblq).
  • eps: parameter passed to optimization routine (GPForth or GPFoblq).
  • maxit: parameter passed to optimization routine (GPForth or GPFoblq).
  • randomStarts: parameter passed to optimization routine (GPFRSorth or GPFRSoblq).
  • L: provided for backward compatibility in target rotations only. Use A going forward.
  • p: Component-wise LpLp, where 0 < p =<=< 1.
  • gpaiter: Maximum iterations for GPA rotation loop in LpLp rotation.

Returns

A GPArotation object which is a list with elements (includes elements used by factanal) with: - loadings: Lh from GPFRSorth or GPFRSoblq.

  • Th: Th from GPFRSorth or GPFRSoblq.

  • Table: Table from GPForth or GPFoblq.

  • method: A string indicating the rotation objective function.

  • orthogonal: A logical indicating if the rotation is orthogonal.

  • convergence: Convergence indicator from GPFRSorth or GPFRSoblq.

  • Phi: t(Th) %*% Th. The covariance matrix of the rotated factors. This will be the identity matrix for orthogonal rotations so is omitted (NULL) for the result from GPFRSorth and GPForth.

  • randStartChar: Vector indicating results from random starts from GPFRSorth or GPFRSoblq

Details

These functions optimize a rotation objective. They can be used directly or the function name can be passed to factor analysis functions like factanal. Several of the function names end in T or Q, which indicates if they are orthogonal or oblique rotations (using GPFRSorth or GPFRSoblq

respectively).

Rotations which are available are

obliminobliqueoblimin family
quartiminoblique
targetTorthogonaltarget rotation
targetQobliquetarget rotation
pstTorthogonalpartially specified target rotation
pstQobliquepartially specified target rotation
oblimaxoblique
entropyorthogonalminimum entropy
quartimaxorthogonal
varimaxorthogonal
simplimaxoblique
bentlerTorthogonalBentler's invariant pattern simplicity criterion
bentlerQobliqueBentler's invariant pattern simplicity criterion
tandemIorthogonalTandem principle I criterion
tandemIIorthogonalTandem principle II criterion
geominTorthogonal
geominQoblique
bigeominTorthogonal
bigeominQoblique
cfTorthogonalCrawford-Ferguson family
cfQobliqueCrawford-Ferguson family
equamaxorthogonalCrawford-Ferguson family
parsimaxorthogonalCrawford-Ferguson family
infomaxTorthogonal
infomaxQoblique
mccammonorthogonalMcCammon minimum entropy ratio
variminorthogonal
bifactorTorthogonalJennrich and Bentler bifactor rotation
bifactorQobliqueJennrich and Bentler biquartimin rotation
lpTorthogonalLpLp rotation
lpQobliqueLpLp rotation

Note that Varimax defined here uses vgQ.varimax and is not varimax

defined in the stats package. stats:::varimax does Kaiser normalization by default whereas Varimax defined here does not.

The argument kappa parameterizes the family for the Crawford-Ferguson method. If m is the number of factors and p is the number of indicators then kappa values having special names are 0=0=Quartimax, 1/p=1/p=Varimax, m/(2p)=m/(2*p)=Equamax, (m1)/(p+m2)=(m-1)/(p+m-2)=Parsimax, 1=1=Factor parsimony.

Bifactor rotations, bifactorT and bifactorQ are called bifactor and biquartimin in Jennrich, R.I. and Bentler, P.M. (2011).

The argument p is needed for LpLp rotation. See Lp rotation for details on the rotation method.

Examples

# see GPFRSorth and GPFRSoblq for more examples # getting loadings matrices data("Harman", package="GPArotation") qHarman <- GPFRSorth(Harman8, Tmat=diag(2), method="quartimax") qHarman <- quartimax(Harman8) loadings(qHarman) - qHarman$loadings #2 ways to get the loadings # factanal loadings used in GPArotation data("WansbeekMeijer", package="GPArotation") fa.unrotated <- factanal(factors = 2, covmat=NetherlandsTV, normalize=TRUE, rotation="none") quartimax(loadings(fa.unrotated), normalize=TRUE) geominQ(loadings(fa.unrotated), normalize=TRUE, randomStarts=100) # passing arguments to factanal (See vignette for a caution) # vignette("GPAguide", package = "GPArotation") data(ability.cov) factanal(factors = 2, covmat = ability.cov, rotation="infomaxT") factanal(factors = 2, covmat = ability.cov, rotation="infomaxT", control=list(rotate=list(normalize = TRUE, eps = 1e-6))) # when using factanal for oblique rotation it is best to use the rotation command directly # instead of including it in the factanal command (see Vignette). fa.unrotated <- factanal(factors = 3, covmat=NetherlandsTV, normalize=TRUE, rotation="none") quartimin(loadings(fa.unrotated), normalize=TRUE) # oblique target rotation of 2 varimax rotated matrices towards each other # See vignette for additional context and computation, trBritain <- matrix( c(.783,-.163,.811,.202,.724,.209,.850,.064, -.031,.592,-.028,.723,.388,.434,.141,.808,.215,.709), byrow=TRUE, ncol=2) trGermany <- matrix( c(.778,-.066, .875,.081, .751,.079, .739,.092, .195,.574, -.030,.807, -.135,.717, .125,.738, .060,.691), byrow=TRUE, ncol = 2) trx <- targetQ(trGermany, Target = trBritain) # Difference between rotated loadings matrix and target matrix y <- trx$loadings - trBritain # partially specified target; See vignette for additional method A <- matrix(c(.664, .688, .492, .837, .705, .82, .661, .457, .765, .322, .248, .304, -0.291, -0.314, -0.377, .397, .294, .428, -0.075,.192,.224, .037, .155,-.104,.077,-.488,.009), ncol=3) SPA <- matrix(c(rep(NA, 6), .7,.0,.7, rep(0,3), rep(NA, 7), 0,0, NA, 0, rep(NA, 4)), ncol=3) targetT(A, Target=SPA) # using random starts data("WansbeekMeijer", package="GPArotation") fa.unrotated <- factanal(factors = 3, covmat=NetherlandsTV, normalize=TRUE, rotation="none") # single rotation with a random start oblimin(loadings(fa.unrotated), Tmat=Random.Start(3)) oblimin(loadings(fa.unrotated), randomStarts=1) # multiple random starts oblimin(loadings(fa.unrotated), randomStarts=100) # assessing local minima for box26 data data(Thurstone, package = "GPArotation") infomaxQ(box26, normalize = TRUE, randomStarts = 150) geominQ(box26, normalize = TRUE, randomStarts = 150) # for detailed investigation of local minima, consult package 'fungible' # library(fungible) # faMain(urLoadings=box26, rotate="geominQ", rotateControl=list(numberStarts=150)) # library(psych) # package 'psych' with random starts: # faRotations(box26, rotate = "geominQ", hyper = 0.15, n.rotations = 150)

See Also

factanal, GPFRSorth, GPFRSoblq, vgQ, Harman, box26, WansbeekMeijer,

References

Bernaards, C.A. and Jennrich, R.I. (2005) Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis. Educational and Psychological Measurement, 65 , 676--696.

Jennrich, R.I. and Bentler, P.M. (2011) Exploratory bi-factor analysis. Psychometrika, 76 .

Author(s)

Coen A. Bernaards and Robert I. Jennrich with some R modifications by Paul Gilbert.