plot_uncertainty function

Plot uncertainty

Plot uncertainty

Displays the probability of non-domination in the variable space. In dimension larger than two, projections in 2D subspaces are displayed.

plot_uncertainty( model, paretoFront = NULL, type = "pn", lower, upper, resolution = 51, option = "mean", nintegpoints = 400 )

Arguments

  • model: list of objects of class km, one for each objective functions,
  • paretoFront: (optional) matrix corresponding to the Pareto front of size [n.pareto x n.obj],
  • type: type of uncertainty, for now only the probability of improvement over the Pareto front,
  • lower: vector of lower bounds for the variables,
  • upper: vector of upper bounds for the variables,
  • resolution: grid size (the total number of points is resolution^d),
  • option: optional argument (string) for n > 2 variables to define the projection type. The 3 possible values are "mean" (default), "max" and "min",
  • nintegpoints: number of integration points for computation of mean, max and min values.

Details

Function inspired by the function print_uncertainty and print_uncertainty_nd from the package KrigInv-package. Non-dominated observations are represented with green diamonds, dominated ones by yellow triangles.

Examples

## Not run: #--------------------------------------------------------------------------- # 2D, bi-objective function #--------------------------------------------------------------------------- set.seed(25468) n_var <- 2 fname <- P1 lower <- rep(0, n_var) upper <- rep(1, n_var) res1 <- easyGParetoptim(fn=fname, lower=lower, upper=upper, budget=15, control=list(method="EHI", inneroptim="pso", maxit=20)) plot_uncertainty(res1$model, lower = lower, upper = upper) #--------------------------------------------------------------------------- # 4D, bi-objective function #--------------------------------------------------------------------------- set.seed(25468) n_var <- 4 fname <- DTLZ2 lower <- rep(0, n_var) upper <- rep(1, n_var) res <- easyGParetoptim(fn=fname, lower=lower, upper=upper, budget = 40, control=list(method="EHI", inneroptim="pso", maxit=40)) plot_uncertainty(res$model, lower = lower, upper = upper, resolution = 31) ## End(Not run)
  • Maintainer: Mickael Binois
  • License: GPL-3
  • Last published: 2024-01-26