GP_deviance function

Computes the Deviance of a GP model

Computes the Deviance of a GP model

Evaluates the deviance (negative 2*log-likelihood), as defined in Ranjan et al. (2011), however the correlation is reparametrized and can be either power exponential or Matern as discussed in corr_matrix.

GP_deviance( beta, X, Y, nug_thres = 20, corr = list(type = "exponential", power = 1.95) )

Arguments

  • beta: a (d x 1) vector of correlation hyper-parameters, as described in corr_matrix
  • X: the (n x d) design matrix
  • Y: the (n x 1) vector of simulator outputs
  • nug_thres: a parameter used in computing the nugget. See GP_fit.
  • corr: a list of parameters for the specifing the correlation to be used. See corr_matrix.

Returns

the deviance (negative 2 * log-likelihood)

Examples

## 1D Example 1 n = 5 d = 1 computer_simulator <- function(x) { x = 2 * x + 0.5 y = sin(10 * pi * x)/(2 * x) + (x - 1)^4 return(y) } set.seed(3) library(lhs) x = maximinLHS(n,d) y = computer_simulator(x) beta = rnorm(1) GP_deviance(beta,x,y) ## 1D Example 2 n = 7 d = 1 computer_simulator <- function(x) { y <- log(x + 0.1) + sin(5 * pi * x) return(y) } set.seed(1) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) beta = rnorm(1) GP_deviance(beta, x, y, corr = list(type = "matern", nu = 5/2)) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 = 4 * x[, 1] - 2 x2 = 4 * x[, 2] - 2 t1 = 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 + 6 * x1 * x2 + 3 * x2^2) t2 = 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 - 36 * x1 * x2 + 27 * x2^2) y = t1 * t2 return(y) } n = 10 d = 2 set.seed(1) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) beta = rnorm(2) GP_deviance(beta, x, y)

References

Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.

See Also

corr_matrix for computing the correlation matrix;

GP_fit for estimating the parameters of the GP model.

Author(s)

Blake MacDonald, Hugh Chipman, Pritam Ranjan

  • Maintainer: Hugh Chipman
  • License: GPL-2
  • Last published: 2025-04-12

Useful links