Computes the power exponential or Matern correlation matrix for a set of n design points in d-dimensional input region and a vector of d correlation hyper-parameters (beta).
corr_matrix(X, beta, corr = list(type ="exponential", power =1.95))
Arguments
X: the (n x d) design matrix
beta: a (d x 1) vector of correlation hyper-parameters in (−∞,∞)
corr: a list that specifies the type of correlation function along with the smoothness parameter. The default corresponds to power exponential correlation with smoothness parameter "power=1.95". One can specify a different power (between 1.0 and 2.0) for the power exponential, or use the Matern correlation function, specified as corr=list(type = "matern", nu=(2*k+1)/2), where c("kin\n", "0,1,2,...")
Returns
The (n x n) correlation matrix, R, for the design matrix (X) and the hyper-parameters (beta).
Details
The power exponential correlation function is given by
where κν is the modified Bessel function of order ν.
Note
Both Matern and power exponential correlation functions use the new β parametrization of hyper-parameters given by c("thetak=\n", "10betak") for easier likelihood optimization. That is, beta is a log scale parameter (see MacDonald et al. (2015)).
Examples
## 1D Example - 1n =5d =1set.seed(3)library(lhs)x = maximinLHS(n,d)beta = rnorm(1)corr_matrix(x,beta)## 1D Example - 2beta = rnorm(1)corr_matrix(x,beta,corr = list(type ="matern"))## 2D example - 1n =10d =2set.seed(2)library(lhs)x = maximinLHS(n,d)beta = rnorm(2)corr_matrix(x, beta, corr = list(type ="exponential", power =2))## 2D example - 2beta = rnorm(2)R = corr_matrix(x,beta,corr = list(type ="matern", nu =5/2))print(R)
References
MacDonald, K.B., Ranjan, P. and Chipman, H. (2015). GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs. Journal of Statistical Software, 64(12), 1-23. https://www.jstatsoft.org/v64/i12/
Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.
Santner, T.J., Williams, B., and Notz, W. (2003), The design and analysis of computer experiments, Springer Verlag, New York.