Plots the predicted response and mean squared error (MSE) surfaces for simulators with 1 and 2 dimensional inputs (i.e. d = 1,2).
## S3 method for class 'GP'plot(x, M =1, range = c(0,1), resolution =50, colors = c("black","blue","red"), line_type = c(1,2), pch =20, cex =1, legends =FALSE, surf_check =FALSE, response =TRUE,...)
Arguments
x: a class GP object estimated by GP_fit
M: the number of iterations for use in prediction. See predict.GP
range: the input range for plotting (default set to [0, 1])
resolution: the number of points along a coordinate in the specified range
colors: a vector of length 3 assigning colors[1] to training design points, colors[2] to model predictions, and colors[3]
to the error bounds
line_type: a vector of length 2 assigning line_type[1] to model predictions, and line_type[2] to the error bounds
pch: a parameter defining the plotting character for the training design points, see pch' for possible options in par`
cex: a parameter defining the size of the pch used for plotting the training design points, see cex' for possible options in par`
legends: a parameter that controls the inclusion of a legend; by default it is `FALSE'
surf_check: logical, switch between 3d surface and 2d level/contour plotting, the default of FALSE implies level/contour plotting
response: logical, switch between predicted response and error (MSE) plots, the default of TRUE displays the response surface
...: additional arguments from wireframe or levelplot
Methods (by class)
GP: The plot method creates a graphics plot for 1-D fits and lattice plot for 2-D fits.
Examples
## 1D Example 1n <-5d <-1computer_simulator <-function(x){ x <-2* x +0.5 y <- sin(10* pi * x)/(2* x)+(x -1)^4 return(y)}set.seed(3)library(lhs)x <- maximinLHS(n,d)y <- computer_simulator(x)GPmodel <- GP_fit(x,y)plot(GPmodel)## 1D Example 2n <-7d <-1computer_simulator <-function(x){ y <- log(x +0.1)+ sin(5* pi * x) return(y)}set.seed(1)library(lhs)x <- maximinLHS(n,d)y <- computer_simulator(x)GPmodel <- GP_fit(x, y)## Plotting with changes from the default line type and charactersplot(GPmodel, resolution =100, line_type = c(6,2), pch =5)## 2D Example: GoldPrice Functioncomputer_simulator <-function(x){ x1 <-4* x[,1]-2 x2 <-4* x[,2]-2 t1 <-1+(x1 + x2 +1)^2*(19-14* x1 +3* x1^2-14* x2 +6* x1 * x2 +3* x2^2) t2 <-30+(2* x1 -3* x2)^2*(18-32* x1 +12* x1^2+48* x2 -36* x1 * x2 +27* x2^2) y <- t1 * t2
return(y)}n <-30d <-2set.seed(1)x <- lhs::maximinLHS(n, d)y <- computer_simulator(x)GPmodel <- GP_fit(x, y)## Basic level plotplot(GPmodel)## Adding Contours and increasing the number of levelsplot(GPmodel, contour =TRUE, cuts =50, pretty =TRUE)## Plotting the Response Surfaceplot(GPmodel, surf_check =TRUE)## Plotting the Error Surface with colorplot(GPmodel, surf_check =TRUE, response =FALSE, shade =TRUE)
References
Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.
See Also
GP_fit for estimating the parameters of the GP model;
predict.GP for predicting the response and error surfaces;
par for additional plotting characters and line types for 1 dimensional plots;