plot function

Plotting GP model fits

Plotting GP model fits

Plots the predicted response and mean squared error (MSE) surfaces for simulators with 1 and 2 dimensional inputs (i.e. d = 1,2).

## S3 method for class 'GP' plot(x, M = 1, range = c(0, 1), resolution = 50, colors = c("black", "blue", "red"), line_type = c(1, 2), pch = 20, cex = 1, legends = FALSE, surf_check = FALSE, response = TRUE, ...)

Arguments

  • x: a class GP object estimated by GP_fit

  • M: the number of iterations for use in prediction. See predict.GP

  • range: the input range for plotting (default set to [0, 1])

  • resolution: the number of points along a coordinate in the specified range

  • colors: a vector of length 3 assigning colors[1] to training design points, colors[2] to model predictions, and colors[3]

    to the error bounds

  • line_type: a vector of length 2 assigning line_type[1] to model predictions, and line_type[2] to the error bounds

  • pch: a parameter defining the plotting character for the training design points, see pch' for possible options in par`

  • cex: a parameter defining the size of the pch used for plotting the training design points, see cex' for possible options in par`

  • legends: a parameter that controls the inclusion of a legend; by default it is `FALSE'

  • surf_check: logical, switch between 3d surface and 2d level/contour plotting, the default of FALSE implies level/contour plotting

  • response: logical, switch between predicted response and error (MSE) plots, the default of TRUE displays the response surface

  • ...: additional arguments from wireframe or levelplot

Methods (by class)

  • GP: The plot method creates a graphics plot for 1-D fits and lattice plot for 2-D fits.

Examples

## 1D Example 1 n <- 5 d <- 1 computer_simulator <- function(x){ x <- 2 * x + 0.5 y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4 return(y) } set.seed(3) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) GPmodel <- GP_fit(x,y) plot(GPmodel) ## 1D Example 2 n <- 7 d <- 1 computer_simulator <- function(x) { y <- log(x + 0.1) + sin(5 * pi * x) return(y) } set.seed(1) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) ## Plotting with changes from the default line type and characters plot(GPmodel, resolution = 100, line_type = c(6,2), pch = 5) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 <- 4 * x[, 1] - 2 x2 <- 4 * x[, 2] - 2 t1 <- 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 + 6 * x1 * x2 + 3 * x2^2) t2 <- 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 - 36 * x1 * x2 + 27 * x2^2) y <- t1 * t2 return(y) } n <- 30 d <- 2 set.seed(1) x <- lhs::maximinLHS(n, d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) ## Basic level plot plot(GPmodel) ## Adding Contours and increasing the number of levels plot(GPmodel, contour = TRUE, cuts = 50, pretty = TRUE) ## Plotting the Response Surface plot(GPmodel, surf_check = TRUE) ## Plotting the Error Surface with color plot(GPmodel, surf_check = TRUE, response = FALSE, shade = TRUE)

References

Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.

See Also

GP_fit for estimating the parameters of the GP model;

predict.GP for predicting the response and error surfaces;

par for additional plotting characters and line types for 1 dimensional plots;

wireframe and levelplot

for additional plotting settings in 2 dimensions.

Author(s)

Blake MacDonald, Hugh Chipman, Pritam Ranjan

  • Maintainer: Hugh Chipman
  • License: GPL-2
  • Last published: 2019-02-08

Useful links