multipartiteBMFixedModel function

Model selection and estimation of multipartite blockmodels

Model selection and estimation of multipartite blockmodels

Estimate the parameters and give the clustering for given numbers of blocks

multipartiteBMFixedModel( list_Net, v_distrib, namesFG, v_K, classifInit = NULL, nbCores = NULL, maxiterVE = NULL, maxiterVEM = NULL, verbose = TRUE )

Arguments

  • list_Net: A list of network (defined via the function DefineNetwork)
  • v_distrib: Type of proababilistic distributions in each network : if 0/1 then bernoulli, if counting then poisson, gaussian or Zero Inflated Gaussian (ZIgaussian) My default = Bernoulli. Must give a vector whose length is the number of networks in list_Net
  • namesFG: Names of functional groups (must correspond to names in listNet)
  • v_K: A vector with the numbers of blocks per functional group
  • classifInit: A list of initial classification for each functional group in the same order as in namesFG
  • nbCores: Number or cores used for the estimation. Not parallelized on windows. By default : half of the cores
  • maxiterVE: Maximum number of iterations in the VE step of the VEM algorithm. Default value = 1000
  • maxiterVEM: Maximum number of iterations of the VEM algorithm. Default value = 1000
  • verbose: Set to TRUE to display the current step of the search algorithm

Returns

Estimated parameters and a classification

Examples

namesFG <- c('A','B') list_pi <- list(c(0.5,0.5),c(0.3,0.7)) # prop of blocks in each FG E <- rbind(c(1,2),c(2,2)) # architecture of the multipartite net. typeInter <- c( "inc","diradj") v_distrib <- c('poisson','bernoulli') list_theta <- list() list_theta[[1]] <- matrix(c(6.1, 8.9, 6.6, 3), 2, 2) list_theta[[2]] <- matrix(c(0.7,1.0, 0.4, 0.6),2, 2) list_Net <- rMBM(v_NQ = c(20,20),E , typeInter, v_distrib, list_pi, list_theta, namesFG = namesFG, seed = 2)$list_Net #res_MBMsimu_fixed <- multipartiteBMFixedModel(list_Net, v_distrib, # namesFG = namesFG, # v_K = c(1,2), # nbCores = 2)
  • Maintainer: Sophie Donnet
  • License: GPL-3
  • Last published: 2023-03-10