Predict NAs in a Collection of Networks from a fitted MBM
predictMBM(RESMBM, whichModel = 1)
RESMBM
: a fitted multipartite blockmodelwhichModel
: The index corresponding to the model used for prediction (default is 1, the best model)the collection of matrices of predictions (probability for binary, intensity for weighted network) a
namesFG <- c('A','B') list_pi <- list(c(0.5,0.5),c(0.3,0.7)) # prop of blocks in each FG E <- rbind(c(1,2),c(2,2)) # architecture of the multipartite net. typeInter <- c( "inc","diradj") v_distrib <- c('gaussian','bernoulli') list_theta <- list() list_theta[[1]] <- list() list_theta[[1]]$mean <- matrix(c(6.1, 8.9, 6.6, 3), 2, 2) list_theta[[1]]$var <- matrix(c(1.6, 1.6, 1.8, 1.5),2, 2) list_theta[[2]] <- matrix(c(0.7,1.0, 0.4, 0.6),2, 2) list_Net <- rMBM(v_NQ = c(30,30),E , typeInter, v_distrib, list_pi, list_theta, namesFG = namesFG, seed = 2)$list_Net res_MBMsimu <- multipartiteBM(list_Net, v_distrib, namesFG = c('A','B'), v_Kinit = c(2,2), nbCores = 2,initBM = FALSE) pred <- predictMBM(res_MBMsimu)