GWASinlps2.4 package

Non-Local Prior Based Iterative Variable Selection Tool for Genome-Wide Association Studies

Performs variable selection with data from Genome-wide association studies (GWAS), or other high-dimensional data with continuous, binary or survival outcomes, combining in an iterative framework the computational efficiency of the structured screen-and-select variable selection strategy based on some association learning and the parsimonious uncertainty quantification provided by the use of non-local priors (see Sanyal et al., 2019 <DOI:10.1093/bioinformatics/bty472>).

  • Maintainer: Nilotpal Sanyal
  • License: GPL (>= 2)
  • Last published: 2025-10-29