ghypChangePars function

Change Parameterizations of the Generalized Hyperbolic Distribution

Change Parameterizations of the Generalized Hyperbolic Distribution

This function interchanges between the following 5 parameterizations of the generalized hyperbolic distribution:

  1. mu,delta,alpha,beta,lambdamu, delta, alpha, beta, lambda

  2. mu,delta,rho,zeta,lambdamu, delta, rho, zeta, lambda

  3. mu,delta,xi,chi,lambdamu, delta, xi, chi, lambda

  4. c("%", "\n\n", "mu,delta,alphabar,betabar,lambda mu, delta, alpha bar, beta bar, lambda")

  5. mu,delta,pi,zeta,lambdamu, delta, pi, zeta, lambda

The first four are the parameterizations given in Prause (1999). The final parameterization has proven useful in fitting.

ghypChangePars(from, to, param, noNames = FALSE)

Arguments

  • from: The set of parameters to change from.
  • to: The set of parameters to change to.
  • param: "from" parameter vector consisting of 5 numerical elements.
  • noNames: Logical. When TRUE, suppresses the parameter names in the output.

Details

In the 5 parameterizations, the following must be positive:

  1. alpha,deltaalpha, delta

  2. zeta,deltazeta, delta

  3. xi,deltaxi, delta

  4. alphabar,deltaalpha bar, delta

  5. zeta,deltazeta, delta

Furthermore, note that in the first parameterization alphaalpha must be greater than the absolute value of betabeta; in the third parameterization, xixi

must be less than one, and the absolute value of chichi must be less than xixi; and in the fourth parameterization, alphabaralpha bar must be greater than the absolute value of betabarbeta bar.

Returns

A numerical vector of length 5 representing param in the to parameterization.

References

Barndorff-Nielsen, O. and , P. (1983). Hyperbolic distributions. In Encyclopedia of Statistical Sciences, eds., Johnson, N. L., Kotz, S. and Read, C. B., Vol. 3, pp. 700--707. New York: Wiley.

Prause, K. (1999) The generalized hyperbolic models: Estimation, financial derivatives and risk measurement. PhD Thesis, Mathematics Faculty, University of Freiburg.

Author(s)

David Scott d.scott@auckland.ac.nz , Jennifer Tso, Richard Trendall

See Also

dghyp

Examples

param1 <- c(0, 3, 2, 1, 2) # Parameterization 1 param2 <- ghypChangePars(1, 2, param1) # Convert to parameterization 2 param2 # Parameterization 2 ghypChangePars(2, 1, param2) # Back to parameterization 1