qqghyp function

Generalized Hyperbolic Quantile-Quantile and Percent-Percent Plots

Generalized Hyperbolic Quantile-Quantile and Percent-Percent Plots

qqghyp produces a generalized hyperbolic Q-Q plot of the values in y.

ppghyp produces a generalized hyperbolic P-P (percent-percent) or probability plot of the values in y.

Graphical parameters may be given as arguments to qqghyp, and ppghyp.

qqghyp(y, mu = 0, delta = 1, alpha = 1, beta = 0, lambda = 1, param = c(mu, delta, alpha, beta, lambda), main = "Generalized Hyperbolic Q-Q Plot", xlab = "Theoretical Quantiles", ylab = "Sample Quantiles", plot.it = TRUE, line = TRUE, ...) ppghyp(y, mu = 0, delta = 1, alpha = 1, beta = 0, lambda = 1, param = c(mu, delta, alpha, beta, lambda), main = "Generalized Hyperbolic P-P Plot", xlab = "Uniform Quantiles", ylab = "Probability-integral-transformed Data", plot.it = TRUE, line = TRUE, ...)

Arguments

  • y: The data sample.
  • mu: mumu is the location parameter. By default this is set to 0.
  • delta: deltadelta is the scale parameter of the distribution. A default value of 1 has been set.
  • alpha: alphaalpha is the tail parameter, with a default value of 1.
  • beta: betabeta is the skewness parameter, by default this is 0.
  • lambda: lambdalambda is the shape parameter and dictates the shape that the distribution shall take. Default value is 1.
  • param: Parameters of the generalized hyperbolic distribution.
  • xlab, ylab, main: Plot labels.
  • plot.it: Logical. Should the result be plotted?
  • line: Add line through origin with unit slope.
  • ...: Further graphical parameters.

Returns

For qqghyp and ppghyp, a list with components: - x: The x coordinates of the points that are to be plotted.

  • y: The y coordinates of the points that are to be plotted.

References

Wilk, M. B. and Gnanadesikan, R. (1968) Probability plotting methods for the analysis of data. Biometrika. 55 , 1--17.

See Also

ppoints, dghyp.

Examples

par(mfrow = c(1, 2)) y <- rghyp(200, param = c(2, 2, 2, 1, 2)) qqghyp(y, param = c(2, 2, 2, 1, 2), line = FALSE) abline(0, 1, col = 2) ppghyp(y, param = c(2, 2, 2, 1, 2))