Generalized Hyperbolic Quantile-Quantile and Percent-Percent Plots
qqghyp
produces a generalized hyperbolic Q-Q plot of the values in y
.
ppghyp
produces a generalized hyperbolic P-P (percent-percent) or probability plot of the values in y
.
Graphical parameters may be given as arguments to qqghyp
, and ppghyp
.
qqghyp(y, mu = 0, delta = 1, alpha = 1, beta = 0, lambda = 1, param = c(mu, delta, alpha, beta, lambda), main = "Generalized Hyperbolic Q-Q Plot", xlab = "Theoretical Quantiles", ylab = "Sample Quantiles", plot.it = TRUE, line = TRUE, ...) ppghyp(y, mu = 0, delta = 1, alpha = 1, beta = 0, lambda = 1, param = c(mu, delta, alpha, beta, lambda), main = "Generalized Hyperbolic P-P Plot", xlab = "Uniform Quantiles", ylab = "Probability-integral-transformed Data", plot.it = TRUE, line = TRUE, ...)
y
: The data sample.mu
: is the location parameter. By default this is set to 0.delta
: is the scale parameter of the distribution. A default value of 1 has been set.alpha
: is the tail parameter, with a default value of 1.beta
: is the skewness parameter, by default this is 0.lambda
: is the shape parameter and dictates the shape that the distribution shall take. Default value is 1.param
: Parameters of the generalized hyperbolic distribution.xlab, ylab, main
: Plot labels.plot.it
: Logical. Should the result be plotted?line
: Add line through origin with unit slope....
: Further graphical parameters.For qqghyp
and ppghyp
, a list with components: - x: The x coordinates of the points that are to be plotted.
Wilk, M. B. and Gnanadesikan, R. (1968) Probability plotting methods for the analysis of data. Biometrika. 55 , 1--17.
ppoints
, dghyp
.
par(mfrow = c(1, 2)) y <- rghyp(200, param = c(2, 2, 2, 1, 2)) qqghyp(y, param = c(2, 2, 2, 1, 2), line = FALSE) abline(0, 1, col = 2) ppghyp(y, param = c(2, 2, 2, 1, 2))