Generalized Inverse Gaussian Quantile-Quantile and Percent-Percent Plots
qqgig
produces a generalized inverse Gaussian QQ plot of the values in y
.
ppgig
produces a generalized inverse Gaussian PP (percent-percent) or probability plot of the values in y
.
If line = TRUE
, a line with zero intercept and unit slope is added to the plot.
Graphical parameters may be given as arguments to qqgig
, and ppgig
.
qqgig(y, chi = 1, psi = 1, lambda = 1, param = c(chi, psi, lambda), main = "GIG Q-Q Plot", xlab = "Theoretical Quantiles", ylab = "Sample Quantiles", plot.it = TRUE, line = TRUE, ...) ppgig(y, chi = 1, psi = 1, lambda = 1, param = c(chi, psi, lambda), main = "GIG P-P Plot", xlab = "Uniform Quantiles", ylab = "Probability-integral-transformed Data", plot.it = TRUE, line = TRUE, ...)
y
: The data sample.chi
: A shape parameter that by default holds a value of 1.psi
: Another shape parameter that is set to 1 by default.lambda
: Shape parameter of the GIG distribution. Common to all forms of parameterization. By default this is set to 1.param
: Parameters of the generalized inverse Gaussian distribution.xlab, ylab, main
: Plot labels.plot.it
: Logical. TRUE denotes the results should be plotted.line
: Logical. If TRUE, a line with zero intercept and unit slope is added to the plot....
: Further graphical parameters.For qqgig
and ppgig
, a list with components: - x: The x coordinates of the points that are be plotted.
Wilk, M. B. and Gnanadesikan, R. (1968) Probability plotting methods for the analysis of data. Biometrika. 55 , 1--17.
ppoints
, dgig
.
par(mfrow = c(1, 2)) y <- rgig(1000, param = c(2, 3, 1)) qqgig(y, param = c(2, 3, 1), line = FALSE) abline(0, 1, col = 2) ppgig(y, param = c(2, 3, 1))