GlarmaVarSel-package

tools:::Rd_package_title("GlarmaVarSel")

tools:::Rd_package_title("GlarmaVarSel")

GlarmaVarSel consists of four functions: "variable_selection.R", "grad_hess_beta.R", "grad_hess_gamma.R" and "NR_gamma.R" For further information on how to use these functions, we refer the reader to the vignette of the package. package

Details

GlarmaVarSel consists of four functions: "variable_selection.R", "grad_hess_beta.R", "grad_hess_gamma.R" and "NR_gamma.R" For further information on how to use these functions, we refer the reader to the vignette of the package.

Author(s)

Marina Gomtsyan, Celine Levy-Leduc, Sarah Ouadah, Laure Sansonnet

Maintainer: Marina Gomtsyan marina.gomtsyan@agroparistech.fr

References

M. Gomtsyan et al. "Variable selection in sparse GLARMA models", arXiv:2007.08623v1

Examples

n=50 p=30 X = matrix(NA,(p+1),n) f = 1/0.7 for(t in 1:n){X[,t]<-c(1,cos(2*pi*(1:(p/2))*t*f/n),sin(2*pi*(1:(p/2))*t*f/n))} gamma0 = c(0) data(Y) result = variable_selection(Y, X, gamma0, k_max=2, n_iter=100, method="min", nb_rep_ss=1000, threshold=0.7, parallel=FALSE, nb.cores=1) beta_est = result$beta_est Estim_active = result$estim_active gamma_est = result$gamma_est
  • Maintainer: Marina Gomtsyan
  • License: GPL-2
  • Last published: 2021-09-16

Useful links