Gradient and Hessian of the log-likelihood with respect to gamma
This function calculates the gradient and Hessian of the log-likelihood with respect to gamma
grad_hess_gamma(Y, X, beta0, gamma0)
Y
: Observation matrixX
: Design matrixbeta0
: Initial beta vectorgamma0
: Initial gamma vectorgrad_L_gamma: Vector of the gradient of L with respect to gamma
hess_L_gamma: Matrix of the Hessian of L with respect to gamma
M. Gomtsyan et al. "Variable selection in sparse GLARMA models", arXiv:2007.08623v1
Marina Gomtsyan, Celine Levy-Leduc, Sarah Ouadah, Laure Sansonnet
Maintainer: Marina Gomtsyan marina.gomtsyan@agroparistech.fr
n=50 p=30 X = matrix(NA,(p+1),n) f = 1/0.7 for(t in 1:n){X[,t]<-c(1,cos(2*pi*(1:(p/2))*t*f/n),sin(2*pi*(1:(p/2))*t*f/n))} gamma0 = c(0) data(Y) glm_pois<-glm(Y~t(X)[,2:(p+1)],family = poisson) beta0<-as.numeric(glm_pois$coefficients) result = grad_hess_gamma(Y, X, beta0, gamma0) grad = result$grad_L_gamma Hessian = result$hess_L_gamma
Useful links