theta2tau function

Kendall's rank correlation coefficient

Kendall's rank correlation coefficient

Kendall's rank correlation coefficient and its inverse.

theta2tau(theta, type) tau2theta(tau, type)

Arguments

  • theta: the dependency parameter. It can be either a scalar, a vector or a matrix and has to lie within a certain interval, i.e. θ[1,)\theta \in [1, \infty) for the Gumbel and Joe family, θ(0,)\theta \in (0, \infty) for the Clayton and Frank family and θ[0,1)\theta \in [0, 1) for the Ali-Mikhail-Haq family.
  • tau: Kendall's rank correlation coefficient. It can be either a scalar, a vector or a matrix and it is to ensure, that τ[0,1)\tau \in [0,1).
  • type: all types are available, see phi for an overview of implemented families.

Examples

# computation of the dependency parameter x = runif(10) theta = tau2theta(x, type = 1) # computation of kendall's tau y = runif(10, 1, 100) tau = theta2tau(y, type = 1)