SpecMulTest function

Multiple testing with FDR control for spectral density matrix

Multiple testing with FDR control for spectral density matrix

SpecMulTest() implements a new multiple testing procedure proposed in Chang et al. (2022) for the following QQ hypothesis testing problems: [REMOVE_ME]H0,q:fi,j(ω)=0 for any (i,j)I(q) and ωJ(q)  versus  H1,q:H0,q is not true[REMOVEME2] H_{0,q}:f_{i,j}(\omega)=0\mathrm{\ for\ any\ }(i,j)\in\mathcal{I}^{(q)}\mathrm{\ and\ }\omega\in\mathcal{J}^{(q)}\mathrm{\ \ versus\ \ }H_{1,q}:H_{0,q}\mathrm{\ is\ not\ true} [REMOVE_ME_2]

for q=1,,Qq=1,\dots,Q. Here, fi,j(ω)f_{i,j}(\omega) represents the cross-spectral density between xt,i x_{t,i} and xt,j x_{t,j} at frequency ω\omega with xt,ix_{t,i} being the ii-th component of the p×1p \times 1 times series xt{\bf x}_t, and I(q)\mathcal{I}^{(q)} and J(q)\mathcal{J}^{(q)} refer to the set of index pairs and the set of frequencies associated with the qq-th test, respectively.

SpecMulTest(Q, PVal, alpha = 0.05, seq_len = 0.01)

Arguments

  • Q: The number of the hypothesis tests.
  • PVal: A vector of length QQ representing p-values of the QQ hypothesis tests.
  • alpha: The prescribed level for the FDR control. The default is 0.05.
  • seq_len: The step size for generating a sequence from 0 to 2×logQ2×log(logQ)\sqrt{2\times\log Q-2\times\log(\log Q )}. The default is 0.01.

Returns

An object of class "hdtstest", which contains the following component: - MultiTest: A logical vector of length QQ. If its qq-th element is TRUE, it indicates that H0,qH_{0,q} should be rejected. Otherwise, H0,qH_{0,q} should not be rejected.

Description

SpecMulTest() implements a new multiple testing procedure proposed in Chang et al. (2022) for the following QQ hypothesis testing problems:

H0,q:fi,j(ω)=0 for any (i,j)I(q) and ωJ(q)  versus  H1,q:H0,q is not true H_{0,q}:f_{i,j}(\omega)=0\mathrm{\ for\ any\ }(i,j)\in\mathcal{I}^{(q)}\mathrm{\ and\ }\omega\in\mathcal{J}^{(q)}\mathrm{\ \ versus\ \ }H_{1,q}:H_{0,q}\mathrm{\ is\ not\ true}

for q=1,,Qq=1,\dots,Q. Here, fi,j(ω)f_{i,j}(\omega) represents the cross-spectral density between xt,i x_{t,i} and xt,j x_{t,j} at frequency ω\omega with xt,ix_{t,i} being the ii-th component of the p×1p \times 1 times series xt{\bf x}_t, and I(q)\mathcal{I}^{(q)} and J(q)\mathcal{J}^{(q)} refer to the set of index pairs and the set of frequencies associated with the qq-th test, respectively.

Examples

# Example 1 ## Generate xt n <- 200 p <- 10 flag_c <- 0.8 B <- 1000 burn <- 1000 z.sim <- matrix(rnorm((n+burn)*p),p,n+burn) phi.mat <- 0.4*diag(p) x.sim <- phi.mat %*% z.sim[,(burn+1):(burn+n)] x <- x.sim - rowMeans(x.sim) Q <- 4 ## Generate the sets Iq and Jq ISET <- list() ISET[[1]] <- matrix(c(1,2),ncol=2) ISET[[2]] <- matrix(c(1,3),ncol=2) ISET[[3]] <- matrix(c(1,4),ncol=2) ISET[[4]] <- matrix(c(1,5),ncol=2) JSET <- as.list(2*pi*seq(0,3)/4 - pi) ## Calculate Q p-values PVal <- rep(NA,Q) for (q in 1:Q) { cross.indices <- ISET[[q]] J.set <- JSET[[q]] temp.q <- SpecTest(t(x), J.set, cross.indices, B, flag_c) PVal[q] <- temp.q$p.value } res <- SpecMulTest(Q, PVal) res

References

Chang, J., Jiang, Q., McElroy, T. S., & Shao, X. (2022). Statistical inference for high-dimensional spectral density matrix. arXiv preprint. tools:::Rd_expr_doi("doi:10.48550/arXiv.2212.13686") .

See Also

SpecTest

  • Maintainer: Chen Lin
  • License: GPL-3
  • Last published: 2025-01-28