SpecTest function

Global testing for spectral density matrix

Global testing for spectral density matrix

SpecTest() implements a new global test proposed in Chang et al. (2022) for the following hypothesis testing problem: [REMOVE_ME]H0:fi,j(ω)=0 for any (i,j)I and ωJ  versus  H1:H0 is not true,[REMOVEME2] H_0:f_{i,j}(\omega)=0 \mathrm{\ for\ any\ }(i,j)\in \mathcal{I}\mathrm{\ and\ }\omega \in \mathcal{J}\mathrm{\ \ versus\ \ }H_1:H_0\mathrm{\ is\ not\ true }\,, [REMOVE_ME_2]

where fi,j(ω)f_{i,j}(\omega) represents the cross-spectral density between xt,i x_{t,i} and xt,j x_{t,j} at frequency ω\omega with xt,ix_{t,i} being the ii-th component of the p×1p \times 1 times series xt{\bf x}_t. Here, I\mathcal{I} is the set of index pairs of interest, and J\mathcal{J} is the set of frequencies.

SpecTest(X, J.set, cross.indices, B = 1000, flag_c = 0.8)

Arguments

  • X: An n×pn\times p data matrix X=(x1,,xn){\bf X} = ({\bf x}_1, \dots , {\bf x}_n)', where nn is the number of observations of the p×1p\times 1 time series {xt}t=1n\{{\bf x}_t\}_{t=1}^n.

  • J.set: A vector representing the set J\mathcal{J}

    of frequencies.

  • cross.indices: An r×2r \times 2 matrix representing the set I\mathcal{I} of rr index pairs, where each row represents an index pair.

  • B: The number of bootstrap replications for generating multivariate normally distributed random vectors when calculating the critical value. The default is 2000.

  • flag_c: The bandwidth c(0,1]c\in(0,1] of the flat-top kernel for estimating fi,j(ω)f_{i,j}(\omega) [See (2) in Chang et al. (2022)]. The default is 0.8.

Returns

An object of class "hdtstest", which contains the following components:

  • Stat: The test statistic of the test.

  • pval: The p-value of the test.

  • cri95: The critical value of the test at the significance level 0.05.

Description

SpecTest() implements a new global test proposed in Chang et al. (2022) for the following hypothesis testing problem:

H0:fi,j(ω)=0 for any (i,j)I and ωJ  versus  H1:H0 is not true, H_0:f_{i,j}(\omega)=0 \mathrm{\ for\ any\ }(i,j)\in \mathcal{I}\mathrm{\ and\ }\omega \in \mathcal{J}\mathrm{\ \ versus\ \ }H_1:H_0\mathrm{\ is\ not\ true }\,,

where fi,j(ω)f_{i,j}(\omega) represents the cross-spectral density between xt,i x_{t,i} and xt,j x_{t,j} at frequency ω\omega with xt,ix_{t,i} being the ii-th component of the p×1p \times 1 times series xt{\bf x}_t. Here, I\mathcal{I} is the set of index pairs of interest, and J\mathcal{J} is the set of frequencies.

Examples

# Example 1 ## Generate xt n <- 200 p <- 10 flag_c <- 0.8 B <- 1000 burn <- 1000 z.sim <- matrix(rnorm((n+burn)*p),p,n+burn) phi.mat <- 0.4*diag(p) x.sim <- phi.mat %*% z.sim[,(burn+1):(burn+n)] x <- x.sim - rowMeans(x.sim) ## Generate the sets I and J cross.indices <- matrix(c(1,2), ncol=2) J.set <- 2*pi*seq(0,3)/4 - pi res <- SpecTest(t(x), J.set, cross.indices, B, flag_c) Stat <- res$statistic Pvalue <- res$p.value CriVal <- res$cri95

References

Chang, J., Jiang, Q., McElroy, T. S., & Shao, X. (2022). Statistical inference for high-dimensional spectral density matrix. arXiv preprint. tools:::Rd_expr_doi("doi:10.48550/arXiv.2212.13686") .

See Also

SpecMulTest

  • Maintainer: Chen Lin
  • License: GPL-3
  • Last published: 2025-01-28

Downloads (last 30 days):