UR_test function

Testing for unit roots based on sample autocovariances

Testing for unit roots based on sample autocovariances

This function implements the test proposed in Chang, Cheng and Yao (2022) for the following hypothesis testing problem: [REMOVE_ME]H0:YtI(0)  versus  H1:Yt\simI(d) for some integer d1,[REMOVEME2] H_0:Y_t \sim I(0)\ \ \mathrm{versus}\ \ H_1:Y_t \simI(d)\ \mathrm{for\ some\ integer\ }d \geq 1\,, [REMOVE_ME_2] where YtY_t is a univariate time series.

UR_test(Y, lagk.vec = NULL, con_vec = NULL, alpha = 0.05)

Arguments

  • Y: A vector Y=(Y1,,Yn){\bf Y} = (Y_1, \dots , Y_n )', where nn is the number of the observations.
  • lagk.vec: The time lag K0K_0 used to calculate the test statistic [See Section 2.1 of Chang, Cheng and Yao (2022)]. It can be a vector specifying multiple time lags. If provided as a s×1s \times 1 vector, the function will output the test results corresponding to each of the ss values in lagk.vec. The default is c(0, 1, 2, 3, 4).
  • con_vec: The constant cκc_\kappa specified in (5) of Chang, Cheng and Yao (2022). The default is 0.55. Alternatively, it can be an m×1m \times 1 vector specified by users, representing mm candidate values of cκc_\kappa.
  • alpha: The significance level of the test. The default is 0.05.

Returns

An object of class "urtest", which contains the following components:

  • statistic: A s×1s \times 1 vector with each element representing the test statistic value associated with each of the ss time lags specified in lagk.vec.

  • reject: An m×sm \times s data matrix R=(Ri,j){\bf R}=(R_{i,j}) where Ri,jR_{i,j} represents whether the null hypothesis H0H_0 should be rejected for cκc_\kappa specified by the ii-th component of con_vec, and K0K_0 specified by the jj-th component of lagk.vec. Ri,j=1R_{i,j}=1 indicates rejection of the null hypothesis, while Ri,j=0R_{i,j}=0 indicates non-rejection.

  • lag.vec: The time lags used in function.

Description

This function implements the test proposed in Chang, Cheng and Yao (2022) for the following hypothesis testing problem:

H0:YtI(0)  versus  H1:Yt\simI(d) for some integer d1, H_0:Y_t \sim I(0)\ \ \mathrm{versus}\ \ H_1:Y_t \simI(d)\ \mathrm{for\ some\ integer\ }d \geq 1\,,

where YtY_t is a univariate time series.

Examples

# Example 1 ## Generate yt N <- 100 Y <-arima.sim(list(ar = c(0.9)), n = 2*N, sd = sqrt(1)) con_vec <- c(0.45, 0.55, 0.65) lagk.vec <- c(0, 1, 2) UR_test(Y, lagk.vec = lagk.vec, con_vec = con_vec, alpha = 0.05) UR_test(Y, alpha = 0.05)

References

Chang, J., Cheng, G., & Yao, Q. (2022). Testing for unit roots based on sample autocovariances. Biometrika, 109 , 543--550. tools:::Rd_expr_doi("doi:10.1093/biomet/asab034") .

  • Maintainer: Chen Lin
  • License: GPL-3
  • Last published: 2025-01-28