WN_test function

Testing for white noise hypothesis in high dimension

Testing for white noise hypothesis in high dimension

WN_test() implements the test proposed in Chang, Yao and Zhou (2017) for the following hypothesis testing problem: [REMOVE_ME]H0:{yt}t=1n is white noise  versus  H1:{yt}t=1n is not white noise.[REMOVEME2] H_0:\{{\bf y}_t\}_{t=1}^n\mathrm{\ is\ white\ noise\ \ versus\ \ }H_1:\{{\bf y}_t\}_{t=1}^n\mathrm{\ is\ not\ white\ noise.} [REMOVE_ME_2]

WN_test( Y, lag.k = 2, B = 1000, kernel.type = c("QS", "Par", "Bart"), pre = FALSE, alpha = 0.05, control.PCA = list() )

Arguments

  • Y: An n×pn \times p data matrix Y=(y1,,yn){\bf Y} = ({\bf y}_1, \dots , {\bf y}_n )', where nn is the number of the observations of the p×1p \times 1

    time series {yt}t=1n\{{\bf y}_t\}_{t=1}^n.

  • lag.k: The time lag KK used to calculate the test statistic [See (4) of Chang, Yao and Zhou (2017)]. The default is 2.

  • B: The number of bootstrap replications for generating multivariate normally distributed random vectors when calculating the critical value. The default is 1000.

  • kernel.type: The option for choosing the symmetric kernel used in the estimation of long-run covariance matrix. Available options include: "QS" (the default) for the Quadratic spectral kernel, "Par"

    for the Parzen kernel, and "Bart" for the Bartlett kernel. See Chang, Yao and Zhou (2017) for more information.

  • pre: Logical. If TRUE (the default), the time series PCA proposed in Chang, Guo and Yao (2018) should be performed on {yt}t=1n\{{\bf y}_t\}_{t=1}^n before implementing the white noise test [See Remark 1 of Chang, Yao and Zhou (2017)]. The time series PCA is implemented by using the function PCA_TS with the arguments passed by control.PCA.

  • alpha: The significance level of the test. The default is 0.05.

  • control.PCA: A list of control arguments passed to the function PCA_TS(), including lag.k, opt, thresh, delta, and the associated arguments passed to the clime function (when opt = 2). See 'Details’ in PCA_TS.

Returns

An object of class "hdtstest", which contains the following components:

  • statistic: The test statistic of the test.

  • p.value: The p-value of the test.

  • lag.k: The time lag used in function.

  • kernel.type: The kernel used in function.

Description

WN_test() implements the test proposed in Chang, Yao and Zhou (2017) for the following hypothesis testing problem:

H0:{yt}t=1n is white noise  versus  H1:{yt}t=1n is not white noise. H_0:\{{\bf y}_t\}_{t=1}^n\mathrm{\ is\ white\ noise\ \ versus\ \ }H_1:\{{\bf y}_t\}_{t=1}^n\mathrm{\ is\ not\ white\ noise.}

Examples

#Example 1 ## Generate xt n <- 200 p <- 10 Y <- matrix(rnorm(n * p), n, p) res <- WN_test(Y) Pvalue <- res$p.value rej <- res$reject

References

Chang, J., Guo, B., & Yao, Q. (2018). Principal component analysis for second-order stationary vector time series. The Annals of Statistics, 46 , 2094--2124. tools:::Rd_expr_doi("doi:10.1214/17-AOS1613") .

Chang, J., Yao, Q., & Zhou, W. (2017). Testing for high-dimensional white noise using maximum cross-correlations. Biometrika, 104 , 111--127. tools:::Rd_expr_doi("doi:10.1093/biomet/asw066") .

See Also

PCA_TS

  • Maintainer: Chen Lin
  • License: GPL-3
  • Last published: 2025-01-28