Size and Power of Several Sample-Overdispersion Test Comparisons
Size and Power of Several Sample-Overdispersion Test Comparisons
This Monte-Carlo simulation procedure provides the power and size of the several sample-overdispersion test comparison, using the likelihood-ratio-test statistics.
MC.Xoc.statistics(group.Nrs, numMC =10, group.alphap, type ="ha", siglev =0.05)
Arguments
group.Nrs: A list specifying the number of reads/sequence depth for each sample in a group with one group per list entry.
numMC: Number of Monte-Carlo experiments. In practice this should be at least 1,000.
group.alphap: If "hnull": A vector of alpha parameters for each taxa.
If "ha": A list consisting of vectors of alpha parameters for each taxa.
type: If "hnull": Computes the size of the test.
If "ha": Computes the power of the test. (default)
siglev: Significance level for size of the test / power calculation. The default is 0.05.
Returns
Size of the test statistics (under "hnull") or power (under "ha") of the test.
Details
Note 1: Though the test statistic supports an unequal number of reads across samples, the performance has not yet been fully tested.
Note 2: All components of group.alphap should be non-zero or it may result in errors and/or invalid results.
Examples
data(saliva) data(throat) data(tonsils)### Get a list of dirichlet-multinomial parameters for the data fit.saliva <- DM.MoM(saliva) fit.throat <- DM.MoM(throat) fit.tonsils <- DM.MoM(tonsils)### Set up the number of Monte-Carlo experiments### We use 1 for speed, should be at least 1,000 numMC <-1### Generate the number of reads per sample### The first number is the number of reads and the second is the number of subjects nrsGrp1 <- rep(12000,9) nrsGrp2 <- rep(12000,11) nrsGrp3 <- rep(12000,12) group.Nrs <- list(nrsGrp1, nrsGrp2, nrsGrp3)### Computing size of the test statistics (Type I error) alphap <- fit.tonsils$gamma
pval1 <- MC.Xoc.statistics(group.Nrs, numMC, alphap,"hnull") pval1
## Not run:### Computing Power of the test statistics (Type II error) alphap <- rbind(fit.saliva$gamma, fit.throat$gamma, fit.tonsils$gamma) pval2 <- MC.Xoc.statistics(group.Nrs, numMC, alphap,"ha") pval2
## End(Not run)